Other Research Directions
Hydrogen Storage
-
Y.-P. He, Y.-J. Liu, and Y.-P. Zhao, “Formation of sub-micro MgH2 whiskers during the hydrogenation of Ti doped Mg film,” Nanotechnology 19, 465602 (2008).
-
W.M. Hlaing Oo, M.D. McCluskey, Y.-P. He, and Y.-P. Zhao, “Strong Fano resonance of oxygen-hydrogen bonds on oblique angle deposited Mg nanoblades,” Appl. Phys. Lett. 92, 183112 (2008).
-
Y.-P. He, Y.-P. Zhao, L. Huang, H. Wang, and R. J. Composto, “Hydrogenation of Mg film and Mg nanoblade array on Ti coated Si substrates,” Appl. Phys. Lett. 93, 163114 (2008).
-
Y.-P. He and Y.-P. Zhao, “Improved hydrogen storage properties of V decorated Mg nanoblade array,” Physical Chemistry Chemical Physics 11, 255–258 (2009).
-
Y.-P. He and Y.-P. Zhao, “Hydrogen storage and cycling properties of Vanadium decorated Mg nanoblade array on Ti coated Si substrate,” Nanotechnology 20, 204008 (2009).
-
Y.-P. He and Y.-P. Zhao, "The role of Mg2Si formation in the hydrogenation of Mg film and Mg nanoblade array on Si substrates," Journal of Alloys and Compounds 482, 173–186 (2009).
-
Xiangwen Chen, Yuping He, Yiping Zhao, and Xinwei Wang, ‘‘Thermophysical properties of hydrogenated vanadium-doped magnesium porous nanostructures,” Nanotechnology 21, 055707 (2010).
-
Y.-P. He, J. G. Fan, and Y.-P. Zhao, "The role of differently distributed vanadium nanocatalyst in the hydrogen storage of magnesium nanostructures," International Journal of Hydrogen Energy 35, 4162–4170 (2010).
-
Bo Yang, Y.-P. He, and Y.-P. Zhao, "Hydrogenation of magnesium nanoblades: the effect of concentration dependent hydrogen diffusion," Appl. Phys. Lett. 98, 081905 (2011).
-
Bo Yang, Yuping He, and Yiping Zhao, "Concentration-dependent hydrogen diffusion in hydrogenation and dehydrogenation of vanadium-coated magnesium nanoblades," International Journal of Hydrogen Energy 36, 15642–15651 (2011).
-
Bingyun Ao, Zhengjun Zhang, Yuping. He, and Yiping Zhao, "Semiconducting ground-state of three polymorphs of Mg2NiH4 from first-principles calculations," International Journal of Hydrogen Energy 38, 16471–16476 (2013).
Lithium Ion Battery
-
Ming Au, Scott McWhorter, Thad Adams, John Gibbs, and Yiping Zhao,“Free standing aluminum nanostructures as anodes of Li-Ion rechargeable batteries,” J. Power Sources 195, 3333–3337 (2010).
-
Yuping He, Jianguo Fan, and Yiping Zhao, “Engineering a well-aligned composition-graded CuSi nanorod array by an oblique angle co-deposition technique,” Crystal Growth & Design 10, 4954–4958 (2010).
-
Ming Au, Yuping He, Yiping Zhao, Hessam Ghassemi, Reza Shahbazian Yassar, Brenda Garcia-Diaz, and Thad Adams, "Silicon and silicon–copper composite nanorods for anodes of Li-ion rechargeable batteries," J. Power Sources 196, 9640– 9647 (2011).
-
Yuping He, Bo Yang, Kaikun Yang, Cameron Brown, Ramaraja Ramasamy, Howard Wang, Cynthia Lundgren, and Yiping Zhao, "Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes," Journal of Materials Chemistry 22, 8294–8303 (2012).
-
Bo Yang, Juraj Irsa, Yuping He, Cynthia Lundgren, and Yiping Zhao, “A chemoelastoplastic analysis of anisotropic swelling in a SnO2 nanowire under lithiation,” Journal of Engineering Materials and Technology 134, 031013 (2012).
-
Yuping He, Cameron Brown, Cynthia A. Lundgren, and Yiping Zhao, "The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical, and optical properties," Nanotechnology 23, 365703 (2012).
-
Yingchao Yang, Yuping He, Yiping Zhao, and Xiaodong Li, "Mechanically robust Si nanorod arrays on Cu/Ti bilayer film coated Si substrate for high performance lithium-ion battery anodes," J. Appl. Phys. 112, 103502 (2012).
-
S. C. DeCaluwe, B. M. Dhar, L. Huang, Y. He, K. Yang, J. P. Owejan, Y. P. Zhao, A. A. Talin, J. A. Dura and H. Wang, “Pore collapse and regrowth in silicon electrodes for rechargeable batteries,” Physical Chemistry Chemical Physics 17, 11301–11312 (2015).
Antimicrobial Materials
-
Hang Liu, Karen K. Leonas, and Yiping Zhao, "Antimicrobial properties and release profile of Ampicillin from electrospun Poly(ε-caprolactone) nanofiber yarns," Journal of Engineered Fibers and Fabrics 5, 10 (2010).
-
Pradip Basnet, George K. Larsen, Ravirajsinh P. Jadeja, Yen-Con Hung, and Yiping Zhao, "α-Fe2O3 nanocolumns and nanorods fabricated by electron beam evaporation for visible light photocatalytic and antimicrobial applications," ACS App. Mater. Interfaces 5, 2085–2095(2013).
-
Mohammed Meziani, Xiuli Dong, Lu Zhu, Les Jones, Gregory LeCroy, Fan Yang, Shengyuan Wang, Ping Wang, Yiping Zhao, Liju Yang, Ralph Tripp, and Ya-Ping Sun, "Visible-light-activated bactericidal functions of carbon quantum dots," ACS Applied Materials & Interfaces 8, 10761 - 10766 (2016).
-
Lu Zhu, Pradip Basnet, Steven R. Larson, Les P. Jones, Jane Y. Howe, Ralph A. Tripp, and Yiping Zhao, "Visible light-induced photoeletrochemical and antimicrobial properties of hierarchical CuBi2O4 by facile hydrothermal synthesis," ChemistrySelect 1, 1518 - 1524 (2016).
-
Liuyang Zhang, Yiping Zhao, and Xianqiao Wang, "Nanoparticle-mediated mechanical destruction of cell membranes: a coarse-grained molecular dynamics study," ACS Appl. Mater. Interfaces 9, 26665 - 26673 (2017).
-
Lu Zhu, David W. Pearson, Stéphane L. Benoit, Jing Xie, Jitendra Pant, Yanjun Yang, Arnab Mondal, Hitesh Handa, Jane Y. Howe, Yen-Con Hung, Jorge E. Vidal, Robert J. Maier, and Yiping Zhao, "Highly efficient antimicrobial activity of CuxFeyOz nanoparticles against important human pathogens," Nanomaterials 10, 2294 (2020).
Wetting of Nanostructures​
-
J. G. Fan, X. J. Tang, and Y.-P. Zhao, “Water contact angles of vertically aligned Si nanorod arrays,” Nanotechnology 15, 501–504 (2004).
-
J.-G. Fan, D. Dyer, G.-G. Zhang, and Y.-P. Zhao, “Nano-carpet effect: pattern formation during the wetting of vertically aligned nanorod array,” Nano Letters 4, 2133–2138 (2004).
-
J.-G. Fan and Y.-P. Zhao, “Characterization of watermarks formed in nano-carpet effect,” Langmuir 22, 3662–3671 (2006).
-
Y.-P. Zhao and J.-G. Fan, “Clusters of bundled nanorods in nanocarpet effect,” Appl. Phys. Lett., 88, 103123 (2006).
-
J.-G. Fan and Y.-P. Zhao, “Spreading of a water droplet on a vertically aligned Si nanorod array surface,” Appl. Phys. Lett. 90, 013102 (2007).
-
J.-G. Fan, J.-X. Fu, A. Collins, and Y-P Zhao, “The effect of the shape of nanorod arrays on the nanocarpet effect,” Nanotechnology 19, 045713 (2008).
-
J.-G. Fan and Y.-P. Zhao, “Freezing a water droplet on an aligned Si nanorod array substrate,” Nanotechnology 19, 155707 (2008).
-
J. G. Fan and Y.-P. Zhao, "Nanocarpet effect induced superhydrophobicity," Langmuire 26, 8245–8250 (2010).
-
Aisha Leh, Hartmann N'guessan, Jianguo Fan, Prashant Badahur, Rafael Tadmor, Yiping Zhao, "On the role of the three-phase contact line in surface deformation," Langmuir 28, 5795–5801 (2012).
Thin Film Growth
Experiment
-
H.-N. Yang, Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, “Noise-induced roughening evolution of amorphous Si films grown by thermal evaporation,” Phys. Rev. Lett. 76, 3774 (1996).
-
Y.-P. Zhao, J. T. Drotar, G.-C. Wang, and T.-M. Lu, “Roughening in plasma etch fronts of Si(100),” Phys. Rev. Lett. 82, 4882 (1999).
-
Y.-P. Zhao, J. B. Fortin, G. Bonvallet, G.-C. Wang, and T.-M. Lu, “Kinetic roughening in vapor deposition polymerization of linear-chain polymer films,” Phys. Rev. Lett. 85, 3229 (2000).
-
Y.-P. Zhao, T.-M. Lu, and G.-C. Wang, Reply to Das Sarma's Comment, Phys. Rev. Lett. 86, 2697 (2001).
-
T. Karabacak, Y.-P. Zhao, Jason T. Drotar, G.-C. Wang, and T.-M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
-
T. Karabacak, Y.-P. Zhao, Jason T. Drotar, G.-C. Wang, and T.-M. Lu, “Kinetic roughening in silicon nitride films growth by PECVD,” Phys. Rev. B 66, 075329 (2002).
​
Theory
-
H.-N. Yang, Y.-P. Zhao, A. Chan, G.-C. Wang, and T.-M. Lu, “Sampling-induced hidden cycles in correlated random rough surface,” Phys. Rev. B 56, 4224 (1997).
-
Jason T. Drotar, Y.-P. Zhao, T.-M. Lu, and G.-C. Wang, “Numerical analysis of the noisy Kuramoto-Sivashisky equation in 2+1 dimensions,” Phys. Rev. E 59, 177 (1999).
-
Y.-P. Zhao, A.R. Hopper, G.-C. Wang, and T.-M. Lu, “Monte Carlo simulation of the initial growth stage in vapor deposition polymerization,” Phys. Rev. E 60, 4310 (1999).
-
Jason T. Drotar, Y.-P. Zhao, T.-M. Lu, and G.-C. Wang, “Mechanisms for plasma and reactive ion etch-front roughening,” Phys. Rev. B 61, 3012 (2000).
-
Jason T. Drotar, Y.-P. Zhao, T.-M. Lu and G.-C. Wang, “Surface roughening in shadowing growth and etching in 2+1 dimensions,” Phys. Rev. B 62, 2118 (2000).
-
Jason T. Drotar, Y.-P. Zhao, T.-M. Lu, and G.-C. Wang, “Surface-roughening in low-pressure chemical vapor deposition,” Phys. Rev. B 64, 125411 (2001).
-
Y.-P. Zhao, Jason T. Drotar, T.-M. Lu, and G.-C. Wang, “Morphology transition during low pressure chemical vapor deposition,” Phys. Rev. Lett. 87, 136102 (2001).
-
Wade Bowie and Y.-P. Zhao, “Monte Carlo simulation of vapor deposition polymerization,” Surf. Sci. Lett. 563, L245–L250 (2004).
-
S. Tangirala, D. P. Landau, and Y.-P. Zhao, ‘‘Dynamic scaling study of vapor deposition polymerization: a Monte Carlo approach,” Phys. Rev. E 81, 011605 (2010).
​
Scattering from Rough Surfaces
Experiment
-
Y. P. Zhao, H.-N. Yang, G.-C. Wang, and T.-M. Lu, “Extraction of real-space correlation function of a rough surface by light scattering using diode array detectors,” Appl. Phys. Lett. 68, 3063 (1996).
-
Y.-P. Zhao, Y.-J. Wu, H.-N. Yang, G.-C. Wang, and T.-M. Lu, “In situ real-time study of chemical etching process of Si(100) using light scattering,” Appl. Phys. Lett. 69, 221 (1996).
-
Y.-P. Zhao, C.-F. Cheng, G.-C. Wang, and T.-M. Lu, “Power law behavior in diffraction from fractal surfaces,” Surf. Sci. Lett. 409, L703 (1998).
-
Y.-P. Zhao, Irene Wu, C.-F. Cheng, Ueyn Block, G.-C. Wang, and T.-M. Lu, “Characterization of random rough surfaces by in-plane light scattering,” J. Appl. Phys. 84, 2571 (1998).
-
Y.-P. Zhao, C.-F. Cheng, G.-C. Wang, and T.-M. Lu, “Characterization of pitting corrosion in aluminum films by light scattering,” Appl. Phys. Lett. 73, 2432 (1998).
-
T. Karabacak, Y.-P. Zhao, M. Stowe, B. Quayle, T.-M. Lu, and G.-C. Wang, “Large angle in-plane light scattering from rough surfaces,” Appl. Opt. 39, 4658 (2000).
-
T. Karabacak, Y.-P. Zhao, T. Liew, T.-M. Lu, and G.-C. Wang, “Anisotropic scaling of hard disk surface structures,” J. Appl. Phys. 88, 3361 (2000).
-
Jason T. Drotar, B. Q. Wei, Y.-P. Zhao, G. Ramanath , P. M. Ajayan, T.-M. Lu, and G.-C. Wang, “Reflection high-energy electron diffraction from carbon nanotubes,” Phys. Rev. B. 64, 125417 (2001).
​
Theory
-
Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, “Diffraction from non-Gaussian rough surfaces,” Phys. Rev. B 55, 13938 (1997).
-
T.-M. Lu, G.-C. Wang, and Y.-P. Zhao, “Beyond intensity oscillation,” Surface Science Review and Letter 5, 899 (1998).
-
Y.-P. Zhao, H.-N. Yang, G.-C. Wang, and T.-M. Lu, “Diffraction from diffusion barrier induced mound structures in epitaxial growth fronts,” Phys. Rev. B 57, 1922 (1998).
-
Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, “Diffraction from anisotropic random rough surfaces,” Phys. Rev. B 58, 7300 (1998).
Roughness Effect on Electric Property of Thin Films
-
Y.-P. Zhao, G.-C. Wang, T.-M. Lu, G. Palasantzas, and J. Th. M. De Hosson, “Surface roughness effect on capacitance and leakage current of an insulating film,” Phys. Rev. B 60, 9157 (1999).
-
M. Li, Y.-P. Zhao, and G.-C. Wang, “In-situ measurement of thickness dependence of electrical resistance of ultrathin Co films on SiO2/Si(111) substrate,” J. Vac. Sci. Tech. A 18, 2992 (2000).
-
G. Palasantzas, Y.-P. Zhao, G.-C. Wang, T.-M. Lu, J. Barnas, and J. Th. M. De Hosson, “Electrical conductivity and thin films growth dynamics,” Phys. Rev. B 61, 11109 (2000).
-
H.-D. Liu, Y.-P. Zhao, G. Ramanath , S. P. Murarka, and G.-C. Wang, “In-situ measurement of thickness dependent of electrical resistance of ultrathin Cu films on thick SiO2/Si(100) substrate,” Thin Solid Films 384, 151–156 (2001).
-
Y.-P. Zhao, B. Q. Wei, P. M. Ajayan, G. Ramanath , T.-M. Lu, G.-C. Wang, A. Rubio, and S. Roche, “Frequency-dependent electrical transport in carbon nanotubes,” Phys. Rev. B 64, 201402(R) (2001).
​
Roughness Effect on Magnetic Property of Thin Films
-
M. Li, Y.-P. Zhao, G.-C. Wang and H.-G. Min, “Effect of surface roughness on magnetization reversal of Co films on plasma-etched Si(100) substrates,” J. Appl. Phys. 83, 6287 (1998).
-
Y.-P. Zhao, G. Palasantzas, G.-C. Wang, and J. Th. M. De Hosson, “Surface/interface roughness induced demagnetizing effect in thin magnetic films,” Phys. Rev. B 60, 1216 (1999).
-
G. Palasantzas, Y.-P. Zhao, G.-C. Wang, and J. Th. M. De Hosson, “Roughness effects on magnetic properties of thin films,” Physica B 283, 199 (2000).
-
Y.-P. Zhao, R. M. Gamache, G.-C. Wang, T.-M. Lu, G. Palasantzas, and J. Th. M. De Hosson, “Effect of surface roughness on magnetic domain wall thickness, domain size, and coercivity,” J. Appl. Phys. 89, 1325 (2001).