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Chapter 2 
The Maxwell Equations 
 
2.1 Maxwell Equations in Vacuum 
 
Maxwell’s equations, the fundamental equations governing electromagnetism, 
describe how electric and magnetic fields are generated and interact with charges 
and currents. They are formulated in both differential and integral forms and are 
foundational in fields such as electrodynamics, optics, and electrical engineering. 
The differential form of Maxwell’s equations is given below, 

⎩
⎪⎪
⎨

⎪⎪
⎧∇ ∙ 𝐷𝐷��⃗ = 𝜌𝜌                            Gauss law for E − field
∇ ∙ 𝐵𝐵�⃗ = 0                             Gauss law for B − field

∇ ×𝐻𝐻��⃗ −
𝜕𝜕𝐷𝐷��⃗
𝜕𝜕𝜕𝜕 = �⃗�𝐽               Ampere’s law                  

∇ × 𝐸𝐸�⃗ +
𝜕𝜕𝐵𝐵��⃗
𝜕𝜕𝜕𝜕 = 0               Faraday’s law                 

, (2.1) 

where 𝐷𝐷��⃗  is the electric displacement field, which accounts for the effects of both 
free and bound charges in materials; 𝐵𝐵�⃗  is the magnetic field, representing the 
density of magnetic flux; 𝐸𝐸�⃗  is the electric field, the force per unit charge 
experienced by a static electric charge; and 𝐻𝐻��⃗  is the magnetic field intensity, which 
relates to 𝐵𝐵�⃗  through the material’s magnetic properties; 𝜌𝜌  is the free charge 
density, representing the amount of charge per unit volume; and �⃗�𝐽 is the current 
density, representing the current per unit area. The corresponding integration 
format are  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ �𝐷𝐷��⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′ = 𝑞𝑞

 �𝐵𝐵�⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′ = 0

� 𝐻𝐻��⃗ ∙ 𝑑𝑑𝑙𝑙
𝐿𝐿

= � �𝐽𝐽 +
𝜕𝜕𝐷𝐷��⃗ (𝜕𝜕)
𝜕𝜕𝜕𝜕 � ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′

𝑆𝑆

� 𝐸𝐸�⃗ ∙ 𝑑𝑑𝑙𝑙
𝐿𝐿

= −
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝐵𝐵�⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′
𝑆𝑆

. (2.2) 
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Fig. 2.1 The charge distributed in an enclosed surface and the electric flux. 

2.1.1 Gauss law for electric field 𝑬𝑬��⃗  

The Gauss law for the electric field 𝐸𝐸�⃗  is expressed as the total electric flux Φ𝐸𝐸 
coming out from a closed surface as shown in Figure 2.1 is determined by the total 
charge Q enclosed in the closed surface, i.e.,    

�𝐸𝐸�⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′ =
𝑞𝑞
𝜀𝜀0

. (2.2) 

Here the total charge 𝑞𝑞 can be written as, 

𝑞𝑞 = � 𝜌𝜌(𝑟𝑟′)
𝑉𝑉′

𝑑𝑑𝑉𝑉′, (2.3) 

where 𝜌𝜌(𝑟𝑟′) is the bulk charge density as indicated in Figure 2.1. Such a charge 
density can be a continuous charge distribution inside the enclosed surface or a 
discretized charge distribution under consideration. For either case, 𝜌𝜌(𝑟𝑟′) can be 
expressed as a continuum function of 𝑟𝑟′ (for a discretized distribution, the function 
𝜌𝜌(𝑟𝑟′)  may contain delta-function (s)). According to Gauss theorem of multi-
variable calculus, 

�𝐸𝐸�⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′ = � ∇ ∙ 𝐸𝐸�⃗
𝑉𝑉

𝑑𝑑𝑉𝑉′. (2.4) 

By comparing Equation 2.4 with Equation 2.3, and noting that both equations 
hold for any arbitrary enclosed surface, we arrive at the relationship 

∇ ∙ 𝐸𝐸�⃗ =
𝜌𝜌
𝜀𝜀0

. (2.5) 

In vacuum, Maxwell introduces the displacement field 𝐷𝐷��⃗ = 𝜀𝜀0𝐸𝐸�⃗ , leading to,  

∇ ∙ 𝐷𝐷��⃗ = 𝜌𝜌. (2.6) 
This corresponds to the first equation in Equation 2.1.  
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o describe charge distributions under different geometric configurations, we define 
specific charge densities. For a bulk charge distribution, the charge density 𝜌𝜌(𝑟𝑟′) 
represents the charge per unit volume. The total charge 𝑞𝑞 within a bounded surface 
can then be calculated using Equation 2.3. If the charges are confined to a surface, 
a surface charge density 𝜎𝜎(𝑟𝑟𝑠𝑠) (in Coulombs per unit area) is used. The total charge 
is determined as,  

𝑞𝑞 = � 𝜎𝜎(𝑟𝑟𝑠𝑠)
𝑆𝑆

𝑑𝑑𝑆𝑆′. (2.7) 

For charges distributed along a line, the linear charge density 𝜆𝜆(𝑟𝑟𝑙𝑙) (in Coulombs 
per unit length) is applicable, and the total charge is given by  

𝑞𝑞 = � 𝜆𝜆(𝑟𝑟𝑙𝑙)𝑑𝑑𝑙𝑙
𝐿𝐿

. (2.8) 

For multiple discrete point charges 𝑞𝑞𝑗𝑗 located in space, the charge density can be 
expressed using the Dirac delta function as, 

𝜌𝜌(𝑟𝑟′) = �𝑞𝑞𝑗𝑗𝛿𝛿�𝑟𝑟 − 𝑟𝑟𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

.  (2.9) 

 

2.1.2 Gauss law for magnetic field 𝑩𝑩��⃗   

A moving charge 𝑞𝑞 with a velocity �⃗�𝑣 in a uniform magnetic field 𝐵𝐵��⃗  experiences a 
magnetic force 𝐹𝐹��⃗ 𝐵𝐵, 

�⃗�𝐹𝐵𝐵 = 𝑞𝑞�⃗�𝑣 × 𝐵𝐵�⃗ . (2.10) 

Alternatively, a magnetic field 𝐵𝐵�⃗  is generated by moving charges or currents, 
where the current 𝐼𝐼 is defined as, 

𝐼𝐼 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

= � 𝐽𝐽 ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′
𝑆𝑆

, (2.11) 

where 𝐼𝐼  is the rate of the change of the electric charge across a surface. 
Microscopically, the current is determined by the current density  𝐽𝐽. In magnetism, 
the following principles are important: 

1) Lorentzian force: the total force 𝐹𝐹��⃗ 𝐿𝐿  acting on a charged particle in the 
presence of both E- and B-fields is called the Lorentzian force 

𝐹𝐹��⃗ 𝐿𝐿 = 𝑞𝑞 �𝐸𝐸��⃗ + �⃗�𝑣 × 𝐵𝐵��⃗ � .  (2.12) 

2) Conservation of charges: The net current passing through an enclosed 
surface equals the total rate of change of charge within the enclosed volume, as 
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charges cannot be created or destroyed in vacuum. As shown in Figure 2.2, the 
total current 𝐼𝐼 flowing into a closed surface (red arrows in Figure 2.2) is, 

         𝐼𝐼𝑖𝑖𝑖𝑖 = ∯ 𝐽𝐽 ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′𝑆𝑆 = ∭ ∇ ∙ 𝐽𝐽𝑉𝑉 𝑑𝑑𝑉𝑉′.      (2.13) 

The outward current 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 (blue arrows in Figure 2.2), due to the change in total 
charge within the volume, is, 

   𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 = −𝑑𝑑𝑑𝑑
𝑑𝑑𝑜𝑜

= − 𝑑𝑑
𝑑𝑑𝑜𝑜∭ 𝜌𝜌(𝑟𝑟′)𝑉𝑉 𝑑𝑑𝑉𝑉′ = −∭ 𝜕𝜕𝜕𝜕�𝑟𝑟′�

𝜕𝜕𝑜𝑜𝑉𝑉 𝑑𝑑𝑉𝑉′.    (2.14) 

 
Fig. 2.2 The current density and the change of charge density around a closed 

surface. 

By conservation of charge, 𝐼𝐼𝑖𝑖𝑖𝑖 = 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 , leading to ∭ ∇ ∙ 𝐽𝐽𝑉𝑉 𝑑𝑑𝑉𝑉′ =

−∭ 𝜕𝜕𝜕𝜕�𝑟𝑟′�
𝜕𝜕𝑜𝑜𝑉𝑉 𝑑𝑑𝑉𝑉′. Since this expression is valid for any situation, it simplifies to 

∇ ∙ 𝐽𝐽 +
𝜕𝜕𝜌𝜌(𝑟𝑟′)
𝜕𝜕𝜕𝜕 = 0. (2.25) 

The current density depends on the nature of the charge distribution. For point 
charges, 

𝐽𝐽(𝑟𝑟′) = �𝑞𝑞𝑗𝑗�⃗�𝑣𝑗𝑗𝛿𝛿�𝑟𝑟′ − 𝑟𝑟𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

.  (2.26) 

For continuous charge distributions, assuming a constant velocity �⃗�𝑣  of electric 
charges flowing through a cross-section/cross-line/cross-point for a 
bulk/surface/line current distribution, then the respective current density 𝐽𝐽(𝑟𝑟′) can 
be expressed as, 

�
𝐽𝐽(𝑟𝑟′) = 𝜌𝜌(𝑟𝑟′)�⃗�𝑣,   for a bulk      
𝐽𝐽(𝑟𝑟′) = 𝜎𝜎(𝑟𝑟′)�⃗�𝑣,   for a surface
𝐽𝐽(𝑟𝑟′) = 𝜆𝜆(𝑟𝑟′)�⃗�𝑣,   for a line       

. (2.27) 
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Fig. 2.3 The magnetic field lines generated by a magnetic dipole. 

3) The source of magnetic field: The magnetic field 𝐵𝐵�⃗  arises from magnetic 
dipoles (see Figure 2.3), currents, moving charges, or spins. Since no magnetic 
monopoles have been observed experimentally,  

�𝐵𝐵�⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′ = 0, (2.28) 

which, by Gauss's theorem, implies, 

∇ ∙ 𝐵𝐵�⃗ = 0. (2.29) 

4) The Biot-Savart law: The magnetic field produced by a current is 
represented by the Biot-Savart law (more details see Chapter 9), 

𝐵𝐵�⃗ =
𝜇𝜇0𝐼𝐼
4𝜋𝜋

�
𝑑𝑑𝑙𝑙 × �𝑟𝑟 − 𝑟𝑟′���⃗ �

|𝑟𝑟 − 𝑟𝑟′|3𝐿𝐿
. (2.30) 

For a current density 𝐽𝐽(𝑟𝑟′), Equation 2.30 can be written as 

𝐵𝐵�⃗ =
𝜇𝜇0
4𝜋𝜋

�
𝐽𝐽(𝑟𝑟′) × (𝑟𝑟 − 𝑟𝑟′)

|𝑟𝑟 − 𝑟𝑟′|3
𝑑𝑑𝑉𝑉′

𝑉𝑉
. (2.31) 

 
Fig. 2.4 Loop integration of the magnetic field. 

x

y

z

I
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From the Biot-Savart law, one can derive Ampere’s law for magnetostatics.  

2.1.3 Ampere’s law   

The line integral of the magnetic field 𝐵𝐵�⃗  around a closed loop is given by 

∮ 𝐵𝐵�⃗ ∙ 𝑑𝑑𝑙𝑙𝐿𝐿 = 𝜇𝜇0 ∑ 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 . (2.32)  

In Figure 2.4, the summation ∑ 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖  includes currents 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4  within the 
integration loop. Currents outside the loop, such as 𝐼𝐼5, do not contribute. For a 
continuous charge distribution, this can be expressed as 

�𝐼𝐼𝑖𝑖
𝑖𝑖𝑖𝑖

= � 𝐽𝐽 ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′
𝑆𝑆

. (2.33) 

Using Stokes’ theorem, we can rewrite the line integral as,  

� 𝐵𝐵�⃗ ∙ 𝑑𝑑𝑙𝑙
𝐿𝐿

= � ∇ × 𝐵𝐵��⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′
𝑆𝑆

. (2.34) 

which leads to, 

∇ × 𝐵𝐵��⃗ = 𝜇𝜇0𝐽𝐽. (2.35) 

Issue with Magnetostatic Ampère’s Law 

A limitation of Equation 2.32 arises when considering the charging of a capacitor. 
As illustrated in Figure 2.5, when a parallel-plate capacitor is connected to a 
battery, a time-dependent current 𝐼𝐼(𝜕𝜕)  flows as the capacitor charges. Let us 
assume that each capacitor plate is extremely thin. To examine this scenario, 
consider two specific loops:  

1. Loop 𝐿𝐿𝐿𝐿: This loop surrounds the charging wire near the left plate. For this 
loop  

� 𝐵𝐵�⃗ ∙ 𝑑𝑑𝑙𝑙
𝐿𝐿𝐿𝐿

= 𝜇𝜇0𝐼𝐼(𝜕𝜕). (2.36) 

Here, the current 𝐼𝐼(𝜕𝜕) generates a magnetic field around the wire. 

2. Loop 𝐿𝐿𝑅𝑅: This loop is located between the two capacitor plates, very close to 
the left plate. For this loop, Ampère's law (Equation 2.32) gives, 

� 𝐵𝐵�⃗ ∙ 𝑑𝑑𝑙𝑙
𝐿𝐿𝑅𝑅

= 0. (2.37) 

According to Equation 2.32, there is no magnetic field between the plates, which 
contradicts the continuity of the magnetic field near the left plate.  
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Fig. 2.5 The magnetic field near a charging capacitor. 

To resolve this, consider a small cylindrical Gaussian surface crossing the left 
plate. On the left side of the plate, the electric field is zero, while on the right side, 
it is constant. From Gauss’s law, 

𝐸𝐸(𝜕𝜕)𝐴𝐴 = 𝜎𝜎(𝑜𝑜)𝐴𝐴
𝜀𝜀0

, (2.38)  

where A is the plate area and 𝜎𝜎(𝜕𝜕) is the surface charge density. This gives  

𝜎𝜎(𝜕𝜕) = 𝜀𝜀0 𝐸𝐸(𝜕𝜕). (2.39) 

The changing surface charge density leads to an effective current density, 

𝐽𝐽(𝜕𝜕) =
𝑑𝑑𝜎𝜎(𝜕𝜕)
𝑑𝑑𝜕𝜕 = 𝜀𝜀0

𝑑𝑑𝐸𝐸(𝜕𝜕)
𝑑𝑑𝜕𝜕 . (2.40) 

This current density, caused by the time-varying electric field 𝐸𝐸�⃗ (𝜕𝜕), is called the 
displacement current. Ampère’s law is thus modified to include this displacement 
current, 

� 𝐵𝐵�⃗ ∙ 𝑑𝑑𝑙𝑙
𝐿𝐿

= 𝜇𝜇0�𝐼𝐼𝑖𝑖
𝑖𝑖𝑖𝑖

+ 𝜇𝜇0𝜀𝜀0�
𝜕𝜕𝐸𝐸�⃗ (𝜕𝜕)
𝜕𝜕𝜕𝜕 ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′

𝑆𝑆
. (2.41) 

This can also be written as, 

� 𝐻𝐻��⃗ ∙ 𝑑𝑑𝑙𝑙
𝐿𝐿

= � �𝐽𝐽 +
𝜕𝜕𝐷𝐷��⃗ (𝜕𝜕)
𝜕𝜕𝜕𝜕 � ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′

𝑆𝑆
, (2.42) 

where 𝐻𝐻��⃗ = 𝐵𝐵��⃗
𝜇𝜇0

, and the differential form becomes 

∇ × 𝐻𝐻��⃗ = 𝐽𝐽 +
𝜕𝜕𝐷𝐷��⃗ (𝜕𝜕)
𝜕𝜕𝜕𝜕 . (2.43) 

S
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Fig. 2.6 A moving bar magnet towards a conducting loop. 

2.1.4 Faraday’s law 

A changing magnetic flux through a conductor loop induces an electromotive force 
(EMF) ℇ, expressed as 

ℇ = −𝑁𝑁
𝑑𝑑Φ𝐵𝐵

𝑑𝑑𝜕𝜕
. (2.44) 

where N is the total number of loops, and the magnetic flux is defined as  

Φ𝐵𝐵 = ∬ 𝐵𝐵�⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′𝑆𝑆 .   

The EMF can also be expressed as 

ℇ = ∮ 𝐸𝐸�⃗ ∙ 𝑑𝑑𝑙𝑙𝐿𝐿 .   

Using Stokes' theorem, this becomes  

� 𝐸𝐸�⃗ ∙ 𝑑𝑑𝑙𝑙
𝐿𝐿

= � ∇ × 𝐸𝐸�⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′
𝑆𝑆

. (2.45) 

For a single loop (𝑁𝑁 = 1), the relationship simplifies to 

∇ × 𝐸𝐸�⃗ = −𝜕𝜕𝐵𝐵�⃗
𝜕𝜕𝜕𝜕 . (2.46)  

This is Faraday’s law, which describes how a time-varying magnetic field 
generates an electric field. 

2.2 Maxwell Equations in Matter 
In most practical scenarios, electric and magnetic fields exist within matter, 
requiring consideration of Maxwell’s equations in material media. From a 
microscopic perspective, the E- and B-fields in matter fundamentally behave as  

N

S
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Fig. 2.7 (a) A homogenous matter; (b) a regularly distributed particles; (c) a 

randomly distributed irregular particles; (d) a nonuniformly distributed particles. 

they do in a vacuum. However, their relative amplitudes, directions, and phases 
are altered due to interactions with the material. While the original Maxwell’s 
equations remain valid, the relationships between 𝐸𝐸�⃗ , 𝐷𝐷��⃗ , 𝐵𝐵�⃗ , and 𝐻𝐻��⃗  are modified, 

�
𝐷𝐷��⃗ = 𝐷𝐷��⃗ �𝐸𝐸�⃗ ,𝐵𝐵�⃗ �
𝐻𝐻��⃗ = 𝐻𝐻��⃗ �𝐸𝐸�⃗ ,𝐵𝐵�⃗ �

.  (2.47) 

These are known as constitutive relationships. For most linear, isotropic materials, 
the relationships can be expressed as, 

�
𝐷𝐷��⃗ = 𝜀𝜀0𝐸𝐸�⃗ + 𝑃𝑃�⃗

𝐻𝐻��⃗ =
1
𝜇𝜇0
𝐵𝐵�⃗ − 𝑀𝑀��⃗

, (2.48) 

and the current density is given by  
𝐽𝐽 = 𝐽𝐽�𝐸𝐸�⃗ ,𝐵𝐵�⃗ � = 𝜎𝜎𝑐𝑐𝐸𝐸�⃗ . (2.49) 

where 𝑃𝑃�⃗  and 𝑀𝑀��⃗  are called the polarization and magnetization of the material, and 
𝜎𝜎𝑐𝑐 is the material’s conductivity. Equation 2.49 is commonly referred to as the 
microscopic Ohm’s law. 

Materials can be categorized based on their behavior in response to electric and 
magnetic fields.  

2.2.1 Linear and nonlinear matters 

For linear materials, the relationship between 𝐷𝐷��⃗  and 𝐸𝐸�⃗ , as well as between 𝐵𝐵�⃗  and 
𝐻𝐻��⃗ , are linear 

�𝐷𝐷
��⃗ = 𝜀𝜀𝜀𝜀0𝐸𝐸�⃗

𝐵𝐵�⃗ = 𝜇𝜇𝜇𝜇0𝐻𝐻��⃗
, (2.50) 

where 𝜀𝜀  and 𝜇𝜇  are the relative dielectric and magnetic permeabilities of the 
material. 

For nonlinear materials, the relationships are more complex and include higher-
order terms, 

�
𝐷𝐷��⃗ = 𝜀𝜀𝜀𝜀0�𝐸𝐸�⃗ + 𝜒𝜒𝐸𝐸2𝐸𝐸�⃗ 𝐸𝐸�⃗ + 𝜒𝜒𝐸𝐸3𝐸𝐸�⃗ 𝐸𝐸�⃗ 𝐸𝐸�⃗ +⋯�
𝐻𝐻��⃗ = 𝜇𝜇𝜇𝜇0�𝐵𝐵�⃗ + 𝜒𝜒𝑀𝑀2𝐵𝐵�⃗ 𝐵𝐵�⃗ + 𝜒𝜒𝑀𝑀3𝐵𝐵�⃗ 𝐵𝐵�⃗ 𝐵𝐵�⃗ + ⋯�

, (2.51) 

(a)                                    (b)                                    (c)                                     (d)
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where 𝜒𝜒𝐸𝐸2 and 𝜒𝜒𝐸𝐸3 are the 2nd and 3rd order electric nonlinearity tensors, while 𝜒𝜒𝐸𝐸2 
and 𝜒𝜒𝐸𝐸3  are the 2nd and 3rd order magnetic nonlinearity tensors. These 
nonlinearities describe how the material responds to stronger fields or exhibits 
phenomena like harmonic generation. 

2.2.2 Homogenous and inhomogeneous matters 

In a homogeneous material (Figure 2.7A), atoms or molecules are uniformly 
distributed throughout the entire volume or surface. For linear and homogeneous 
materials, the permittivity 𝜀𝜀 and permeability 𝜇𝜇 are constant and do not vary with 
location.  

If the material consists of regularly distributed particles or units (Figure 2.7B), 
whose size and spacing are comparable to the wavelength of electromagnetic 
waves, strong electromagnetic coupling between the units can significantly alter 𝜀𝜀 
and 𝜇𝜇. These materials are called metamaterials. In such cases, the arrangement, 
size, and shape of the particles play a crucial role in determining the effective 𝜀𝜀 
and 𝜇𝜇. Furthermore, the parameters inside, near, and between the particles can 
differ significantly  

For materials where the particles or units are distributed randomly (Figure 2.7C), 
with random size and shape distributions, the material is termed a random medium. 
Statistically, such media can be treated as homogeneous, with effective 𝜀𝜀 and 𝜇𝜇  
values determined by the spatial and morphological distribution of the particles. 
However, within the random medium, the local values of 𝜀𝜀  and 𝜇𝜇  vary 
significantly near and inside the particles. 

When particles or units are non-uniformly distributed (Figure 2.7D), both ε and μ 
become functions of position 𝑟𝑟′, leading to spatially varying fields 

𝐷𝐷��⃗ (𝑟𝑟′) = 𝜀𝜀(𝑟𝑟′)𝜀𝜀0𝐸𝐸�⃗ (𝑟𝑟′), 𝐵𝐵�⃗ (𝑟𝑟′) = 𝜇𝜇(𝑟𝑟′)𝜇𝜇0𝐻𝐻��⃗ (𝑟𝑟′). (2.52) 

In such cases, the spatial variation must be considered. However, if the variations 
are uniform on a macroscopic scale, effective medium theories, such as mean-field 
approximations, can be applied. 

2.2.3 Isotropic and anisotropic matters 

Isotropic materials exhibit uniform properties in all directions, meaning their 
response to electric or magnetic fields does not depend on the direction of the 
applied field. For isotropic materials, 𝜀𝜀 and 𝜇𝜇 are scalars, simplifying Maxwell’s 
equations to Equation 2.50.  

Anisotropic materials have direction-dependent properties, often resulting from 
their lattice structure (e.g., 2D materials, nanotubes) or morphology (e.g., nanorod 
arrays, patterned surfaces). Their response to external fields is described using 
tensors,  

𝐷𝐷��⃗ (𝑟𝑟′) = 𝜀𝜀(𝑟𝑟′)𝜀𝜀0𝐸𝐸�⃗ (𝑟𝑟′), 𝐵𝐵�⃗ (𝑟𝑟′) = 𝜇𝜇(𝑟𝑟′)𝜇𝜇0𝐻𝐻��⃗ (𝑟𝑟′). (2.53) 
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Here 𝜀𝜀 and 𝜇𝜇 are the second order tensors, 

𝜀𝜀 = �
𝜀𝜀𝑥𝑥𝑥𝑥 𝜀𝜀𝑥𝑥𝑥𝑥 𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝑥𝑥𝑥𝑥 𝜀𝜀𝑥𝑥𝑥𝑥 𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝑥𝑥𝑥𝑥 𝜀𝜀𝑥𝑥𝑥𝑥 𝜀𝜀𝑥𝑥𝑥𝑥

� , 𝜇𝜇 = �
𝜇𝜇𝑥𝑥𝑥𝑥 𝜇𝜇𝑥𝑥𝑥𝑥 𝜇𝜇𝑥𝑥𝑥𝑥
𝜇𝜇𝑥𝑥𝑥𝑥 𝜇𝜇𝑥𝑥𝑥𝑥 𝜇𝜇𝑥𝑥𝑥𝑥
𝜇𝜇𝑥𝑥𝑥𝑥 𝜇𝜇𝑥𝑥𝑥𝑥 𝜇𝜇𝑥𝑥𝑥𝑥

� . (2.54) 

For homogeneous, linear, and isotropic materials, the tensors simplify to, 

𝜀𝜀 = �
𝜀𝜀 0 0
0 𝜀𝜀 0
0 0 𝜀𝜀

� ,   𝜇𝜇 = �
𝜇𝜇 0 0
0 𝜇𝜇 0
0 0 𝜇𝜇

� . (2.55) 

In anisotropic materials, 𝐷𝐷��⃗  and 𝐵𝐵�⃗  may not align with 𝐸𝐸�⃗  and 𝐻𝐻��⃗ , respectively, 
reflecting directionally dependent responses. 

2.2.4 Stimulate or active matters 

Stimulated or active materials respond dynamically to external stimuli such as 
electric, magnetic, mechanical, or optical fields. Their electromagnetic properties 
can be tuned, enabling complex interactions with electromagnetic waves. Three 
notable effects are discussed below. 

1. Electro-optical (EO) effect  

The EO effect alters a material's optical properties under an applied electric field. 
Examples include: 

• Pockels effect (linear): The refractive index change ∆𝜀𝜀𝑖𝑖𝑗𝑗 is proportional to the 
field, 

∆𝜀𝜀𝑖𝑖𝑗𝑗 = �𝑟𝑟𝑖𝑖𝑗𝑗𝑖𝑖𝐸𝐸𝑖𝑖

3

𝑖𝑖=1

. (2.56) 

where 𝑟𝑟𝑖𝑖𝑗𝑗𝑖𝑖  is the EO coefficient tensor specific to the material, and 𝐸𝐸𝑖𝑖  is the 
component of applied electric field. The Pockels effect is absent in materials with 
centrosymmetry, meaning it is primarily observed in crystals lacking a center of 
symmetry, such as lithium niobate (LiNbO₃), potassium titanyl phosphate (KTP), 
and gallium arsenide (GaAs). The Pockels effect is commonly used in EO 
modulators, which control the phase or amplitude of light passing through the 
material. These modulators are essential in telecommunications for modulating 
laser signals in optical fiber systems. 

• Kerr effect (quadratic): The change in the refractive index ∆𝜀𝜀𝑖𝑖𝑗𝑗  is proportional 
to the square of the applied electric field, 

∆𝜀𝜀𝑖𝑖𝑗𝑗 = ∑ ∑ 𝐾𝐾𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙𝐸𝐸𝑖𝑖𝐸𝐸𝑙𝑙3
𝑙𝑙=1

3
𝑖𝑖=1 , (2.57)  

where 𝐾𝐾𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙  is the Kerr coefficient tensor, and 𝐸𝐸𝑖𝑖  and 𝐸𝐸𝑙𝑙  are components of the 
electric field. Unlike the Pockels effect, the Kerr effect can occur in 
centrosymmetric materials, and it is observed in materials such as nitrobenzene 
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and CS₂ (carbon disulfide). It is utilized in Kerr cells, which are used in high-speed 
optical shutters, modulators, and Q-switching devices in lasers. It is also the basis 
for optical Kerr microscopy and ultrafast pulse generation. 

The electrochromic effect is a phenomenon where the optical properties, 
particularly the absorption spectrum of a material, change in response to an applied 
electric field or current, often leading to a visible change in color. This effect is 
typically reversible, and the change in dielectric properties can be described as, 

∆𝜀𝜀(𝜆𝜆,𝐸𝐸) = 𝜀𝜀(𝜆𝜆,𝐸𝐸) − 𝜀𝜀(𝜆𝜆, 0). (2.58) 

where 𝜀𝜀(𝜆𝜆,𝐸𝐸) is the dielectric function dependent on the wavelength 𝜆𝜆 and the 
applied electric field 𝐸𝐸. Typical electrochromic materials include transition metal 
oxides such as tungsten oxide (WO₃) and organic compounds like viologens. The 
electrochromic effect is widely used in smart windows, which can change 
transparency to control the amount of light and heat passing through, thereby 
improving energy efficiency in buildings. It is also used in rearview mirrors for 
automobiles, displays, and low-power electronic paper. 

2. The magneto-optical (MO) effect 

The MO effect refers to the interaction between light and a material in the presence 
of a magnetic field, leading to changes in the material’s optical properties, such as 
its refractive index, absorption, and polarization state. This effect arises due to the 
coupling between the magnetic field and the electronic structure of the material, 
which can alter how the material interacts with electromagnetic waves. The 
magneto-optical effect is often characterized by changes in the dielectric tensor, 
which becomes anisotropic and complex, depending on the direction and 
magnitude of the applied magnetic field. 

The Faraday effect is a MO phenomenon where the polarization plane of linearly 
polarized light rotates as it passes through a material under the influence of a 
magnetic field parallel to the direction of light propagation. The rotation angle θF 
is proportional to the magnetic field strength B, the length of the medium L, and 
the Verdet constant V of the material, 

𝜃𝜃𝐹𝐹 = 𝑉𝑉𝐵𝐵𝐿𝐿. (2.59) 

This effect can be understood through the magneto-optical modification of the 
dielectric tensor. In an isotropic material, the dielectric tensor in the presence of a 
magnetic field (in z-direction) becomes, 

𝜀𝜀 = �
𝜀𝜀 𝑖𝑖𝜀𝜀𝑀𝑀𝑀𝑀 0

−𝑖𝑖𝜀𝜀𝑀𝑀𝑀𝑀 𝜀𝜀 0
0 0 𝜀𝜀

� . (2.60) 

with 𝜀𝜀𝑀𝑀𝑀𝑀 ∝ 𝐵𝐵�⃗ , where 𝐵𝐵�⃗  is the external applied magnetic field, which introduces 
off-diagonal components causing the rotation of polarization. The Faraday effect 
is observed in materials like terbium gallium garnet (TGG), yttrium iron garnet 
(YIG), and flint glass. It is widely used in optical isolators and circulators, which 
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are essential components in laser systems and optical communication networks to 
prevent back-reflected light from interfering with the source. 

The magneto-optical Kerr effect (MOKE) occurs when the polarization of light 
reflected from a magnetized surface is altered. The effect can manifest in three 
main forms: polar, longitudinal, and transverse, depending on the orientation of 
the magnetic field relative to the light's incidence. 

• Polar MOKE: Observed when the magnetic field is perpendicular to the 
surface. 

• Longitudinal MOKE: Occurs when the magnetic field is parallel to both 
the surface and the plane of incidence. 

• Transverse MOKE: Seen when the magnetic field is parallel to the surface 
but perpendicular to the plane of incidence. 

The change in polarization due to MOKE can be described by a complex Kerr 
rotation angle 𝜃𝜃𝐾𝐾 + 𝑖𝑖𝜂𝜂𝐾𝐾, where  𝜃𝜃𝐾𝐾 is the rotation of the polarization plane and 𝜂𝜂𝐾𝐾 
is the ellipticity induced, 

𝜃𝜃𝐾𝐾 + 𝑖𝑖𝜂𝜂𝐾𝐾 =
𝜀𝜀𝑖𝑖𝑗𝑗
𝜀𝜀𝑖𝑖𝑖𝑖

, (2.61) 

where 𝜀𝜀𝑖𝑖𝑗𝑗  is the off-diagonal component of the dielectric tensor induced by the 
magnetic field, and 𝜀𝜀𝑖𝑖𝑖𝑖  is the diagonal component. MOKE is prominent in 
magnetic materials such as iron (Fe), cobalt (Co), and nickel (Ni), as well as in 
magnetic thin films and multilayers. It is used in magnetic storage technology, such 
as in magneto-optical drives, and in the characterization of magnetic thin films and 
nanostructures through MOKE microscopy. 

3. Chiral material 

Chiral materials are a class of substances that lack mirror symmetry, meaning they 
cannot be superimposed on their mirror image. This inherent asymmetry, known 
as chirality, leads to unique optical properties, particularly in how they interact 
with polarized light. Chiral materials can rotate the polarization plane of light 
(optical activity) or exhibit different absorption of left- and right-circularly 
polarized light (circular dichroism). These properties make chiral materials 
essential in various scientific and industrial applications, including optics, 
pharmaceuticals, and materials science. The constitutive relationship for chiral 
materials is more complex than for non-chiral materials because it includes terms 
that account for the coupling between the electric and magnetic fields, 

�
𝐷𝐷��⃗ = 𝜀𝜀𝜀𝜀0𝐸𝐸�⃗ + 𝑖𝑖𝑖𝑖𝐻𝐻��⃗

𝐵𝐵�⃗ =
1
𝜇𝜇𝜇𝜇0

𝐻𝐻��⃗ − 𝑖𝑖𝑖𝑖𝐸𝐸�⃗
, (2.62) 

where 𝑖𝑖 is the chirality parameter. The term 𝑖𝑖𝑖𝑖 introduces a coupling between the 
electric and magnetic fields, which is responsible for the chiral optical effects, such 
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as optical activity and circular dichroism. When light propagates through a chiral 
material, its behavior differs significantly from propagation in non-chiral media. 
Two key effects are observed: First, optical rotation (optical activity). As linearly 
polarized light passes through a chiral material, the polarization plane rotates. This 
rotation is proportional to the thickness of the material and the strength of its 
optical activity. The rotation angle θ can be described by, 

𝜃𝜃 = 𝜔𝜔𝜔𝜔𝐿𝐿
𝑐𝑐

, (2.63) 

where 𝜔𝜔  is the angular frequency of light and L is the length of the material. 
Second, circular dichroism. Chiral materials absorb left- and right-circularly 
polarized light differently, leading to an elliptically polarized transmitted beam. 
This differential absorption results from the different interactions between the 
material and the two circular polarizations, which is quantified by the difference 
in their extinction coefficients. 

Many biomolecules, such as proteins and sugars, are inherently chiral and exhibit 
optical activity. For example, glucose and other saccharides are well-known for 
their ability to rotate the plane of polarized light. Chiral liquid crystals, such as 
those used in liquid crystal displays (LCDs), are engineered to manipulate light 
through their twisted molecular structure. Engineered chiral metamaterials are 
designed to exhibit strong chiral properties, including negative refraction and 
enhanced circular dichroism, by carefully arranging sub-wavelength structures. 

The ability of chiral materials to rotate the polarization of light is used in 
polarimeters to measure the concentration of chiral substances in solutions, such 
as sugars and pharmaceuticals. In addition, chiral materials are used in devices like 
circular polarizers and optical isolators, which rely on manipulating light's 
polarization state. Furthermore, in the pharmaceutical industry, the chirality of 
drugs is critical because different enantiomers (mirror-image forms) of a molecule 
can have drastically different biological effects. Finally, the engineered chiral 
metamaterials can be used in applications such as advanced sensing, imaging, and 
controlling light propagation in novel ways, including cloaking and negative 
refraction. 

 
Fig. 2.8 (a) A homogenous matter; (b) a regularly distributed particles; (c) a 

randomly distributed irregular particles 

2

1
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2.3 Boundary Conditions 
Many E- and B-field related problems occur at two materials interfaces. Certain 
components of E- and B-fields at the boundary shall be continuous at the material 
interface. As shown in Figure 2.8, using the integration forms of maxwell 
equations, construct a small cylindrical Gaussian surface and rectangular loop 
across boundary, one has, 

⎩
⎪
⎨

⎪
⎧� 𝐷𝐷��⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′ = � 𝜌𝜌(𝑟𝑟′)

𝑉𝑉
𝑑𝑑𝑉𝑉′

𝑆𝑆

� 𝐵𝐵�⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′ = 0
𝑆𝑆

                          
. (2.64) 

We have, 

�
�𝐷𝐷��⃗ 2 − 𝐷𝐷��⃗ 1� ∙ 𝑛𝑛�2 = 𝜎𝜎
�𝐵𝐵�⃗ 2 − 𝐵𝐵�⃗ 1� ∙ 𝑛𝑛�2 = 0

, (2.65) 

i.e., normal components of 𝐷𝐷��⃗  field may not be continuous if there are free surface 
charge distribution 𝜎𝜎; while for the magnetic field 𝐵𝐵�⃗ , its normal components are 
continuous across the interface. For the loop, using the loop integration equations,  

⎩
⎪
⎨

⎪
⎧� 𝐻𝐻��⃗ ∙ 𝑑𝑑𝑙𝑙

𝐿𝐿
= � �𝐽𝐽 +

𝜕𝜕𝐷𝐷��⃗ (𝜕𝜕)
𝜕𝜕𝜕𝜕

� ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′
𝑆𝑆

� 𝐸𝐸�⃗ ∙ 𝑑𝑑𝑙𝑙
𝐿𝐿

= −�
𝜕𝜕𝐵𝐵�⃗ (𝜕𝜕)
𝜕𝜕𝜕𝜕

∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′
𝑆𝑆

      
, (2.66) 

the tangent components of the fields can be written as, 

�
�𝐸𝐸�⃗ 2 − 𝐸𝐸�⃗1� × 𝑛𝑛�2 = 0        
�𝐻𝐻��⃗ 2 − 𝐻𝐻��⃗ 1�× 𝑛𝑛�2 = 𝐾𝐾��⃗ (𝑟𝑟𝑠𝑠)

, (2.67) 

where 𝐾𝐾��⃗ (𝑟𝑟𝑠𝑠) is the surface current density at the boundary. Equation 2.67 shows 
that at the boundary, the tangent components of the electric field 𝐸𝐸�⃗  are continuous, 
and the magnetic intensity 𝐻𝐻��⃗  may not be continuous if the surface current density 
𝐾𝐾��⃗  is not zero. 
 

 
 

In-class Activity 
2-1. Discuss how an electric or magnetic field interacts with an atom, a molecule, 

an array of atom/molecule, and a crystalline solid? 
2-2. Can the superposition principle be valid when you have N-charged conducting 

spheres with the same charge q and diameter placed close together? How about 
N-magnetic bars? 
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2-3. Derive the displacement current when charging a parallel plate capacitor in an 

RC circuit.  

 
2-4. How to describe the dielectric and magnetic properties of a metamaterial, a 

porous material, or the color of a beetle? 

 
2-5. In my lab we are using glancing angle deposition to make nanorod array thin 

film, see the SEM image below. If the material is dielectric, how can you 
describe the dielectric function of the material? If the material is magnetic, 
how can you describe the magnetic permeability? 

 
2-6. How to describe the institutive relationship for Pockel effect, Kerr effect, 

Faraday effect, acoustic-optical effect, electro-absorption effect? 
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