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Chapter 4 
Electric Multipole 
 
4.1 Point Dipole and Quadrupole 
4.1.1 The point dipole  
A point dipole consists of two opposite point charges, +𝑞𝑞 and −𝑞𝑞, separated by a 
distance d, as shown in Figure 4.1. The electric dipole moment 𝑝𝑝 is a vector and 
defined as, 

   𝑝𝑝 = 𝑞𝑞𝑑𝑑,          (4.1) 

where 𝑑𝑑 is a location vector pointing from the negative charge to positive charge, 
with a magnitude �𝑑𝑑� = 𝑑𝑑. The dipole moment encapsulates both the strength and 
direction of the dipole, providing insight into its electric field characteristics. 

Next, we consider the electrostatic potential and electric field generated at a point 
P located at position 𝑟𝑟 due to the dipole, which is centered at 𝑟𝑟′. The potential 𝜑𝜑𝑑𝑑 
produced at point P is the result of the superposition of the potentials from both 
charges,  

  
Fig. 4.1 A point dipole and the field and potential generated at P.  
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𝜑𝜑𝑑𝑑(𝑟𝑟) = 𝜑𝜑+(𝑟𝑟+) + 𝜑𝜑−(𝑟𝑟−) = 𝑞𝑞
4𝜋𝜋𝜀𝜀0

� 1
𝑟𝑟+
− 1

𝑟𝑟−
�,        (4.2) 

where 𝑟𝑟+ and 𝑟𝑟− are the location vectors from the positive charge and negative 
charge to P, as shown in Figure 4.1. Let 𝑅𝑅�⃗ = 𝑟𝑟 − 𝑟𝑟′, then 𝑟𝑟+ = 𝑅𝑅�⃗ − 𝑑⃗𝑑

2
 and 𝑟𝑟− =

𝑅𝑅�⃗ + 𝑑⃗𝑑
2
. Thus, we can rewrite the potential as 

        𝜑𝜑𝑑𝑑(𝑟𝑟) = 𝑞𝑞
4𝜋𝜋𝜀𝜀0

� 1

�𝑅𝑅�⃗ −𝑑𝑑
��⃗
2�
− 1

�𝑅𝑅�⃗ +𝑑𝑑
��⃗
2�
� = 𝑞𝑞

4𝜋𝜋𝜀𝜀0
� 1

�𝑅𝑅2+𝑑𝑑
2
4 −𝑑⃗𝑑∙𝑅𝑅�⃗

− 1

�𝑅𝑅2+𝑑𝑑
2
4 +𝑑⃗𝑑∙𝑅𝑅�⃗

� .       (4.3) 

For cases where 𝑅𝑅 ≫ 𝑑𝑑, we can simplify this expression. By applying the binomial 
approximation, we have 

      𝜑𝜑𝑑𝑑(𝑟𝑟) ≈ 𝑞𝑞
4𝜋𝜋𝜀𝜀0𝑅𝑅

� 1

�1−𝑑𝑑
��⃗ ∙𝑅𝑅��⃗
𝑅𝑅2

− 1

�1+𝑑𝑑
��⃗ ∙𝑅𝑅��⃗
𝑅𝑅2

�.         (4.4) 

Using a Taylor expansion for small quantities, we arrive at, 

        𝜑𝜑𝑑𝑑(𝑟𝑟) ≈ 𝑞𝑞
4𝜋𝜋𝜀𝜀0

𝑑⃗𝑑∙𝑅𝑅�⃗
𝑅𝑅3

= 𝑝⃗𝑝∙𝑅𝑅�⃗

4𝜋𝜋𝜀𝜀0�𝑅𝑅�⃗ �
3 = 𝑝⃗𝑝∙(𝑟𝑟−𝑟𝑟′)

4𝜋𝜋𝜀𝜀0|𝑟𝑟−𝑟𝑟′|3
.        (4.5) 

This expression shows that the potential due to a point dipole diminishes with the 
square of the distance, which is characteristic of dipolar fields. To find the electric 
field 𝐸𝐸�⃗ 𝑑𝑑 produced at point P, we take the negative gradient of the potential, 

        𝐸𝐸�⃗ 𝑑𝑑 = −∇𝜑𝜑𝑑𝑑(𝑟𝑟) = − 1
4𝜋𝜋𝜀𝜀0

∇ �𝑝𝑝 ∙ (𝑟𝑟−𝑟𝑟′)
|𝑟𝑟−𝑟𝑟′|3

�.        (4.6) 

 

Fig. 4.2 A point dipole in an external electric field 𝐸𝐸�⃗ (𝑟𝑟). 
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Applying the identity ∇�𝐴𝐴 ∙ 𝐵𝐵�⃗ � = �𝐴𝐴 ∙ ∇�𝐵𝐵�⃗ + �𝐵𝐵�⃗ ∙ ∇�𝐴𝐴 + 𝐴𝐴 × �∇ × 𝐵𝐵�⃗ � + 𝐵𝐵�⃗ ×
�∇ × 𝐴𝐴� and the following relationships ∇ × 𝑝𝑝 = 0, ∇ × (𝑟𝑟−𝑟𝑟′)

|𝑟𝑟−𝑟𝑟′|3
= 0, and � (𝑟𝑟−𝑟𝑟′)

|𝑟𝑟−𝑟𝑟′|3
∙

∇� 𝑝𝑝 = 0, we obtain the expression for the electric field outside the dipole, 

   𝐸𝐸�⃗ 𝑑𝑑 = 1
4𝜋𝜋𝜀𝜀0

�3𝑅𝑅
�(𝑅𝑅�∙𝑝⃗𝑝)−𝑝⃗𝑝

�𝑅𝑅�⃗ �
3 �.         (4.7) 

However, it is important to note that at the location 𝑟𝑟 = 𝑟𝑟′, which is the center of 
the dipole, the expression for the electric field 𝐸𝐸�⃗ 𝑑𝑑 exhibits a singularity. To account 
for this, we can modify the expression to incorporate the distribution of the two 
point charges that constitute the dipole, 

      𝐸𝐸�⃗ 𝑑𝑑 = 1
4𝜋𝜋𝜀𝜀0

�3𝑅𝑅
�(𝑅𝑅�∙𝑝⃗𝑝)−𝑝⃗𝑝

�𝑅𝑅�⃗ �
3 − 4𝜋𝜋

3
𝑝𝑝𝛿𝛿(𝑅𝑅�⃗ )�.         (4.8) 

This adjustment accounts for the infinite electric field at the dipole’s center by 
introducing a delta function that represents the localized charge distribution. 

 
Taylor expansion 

For an arbitrary function 𝑓𝑓(𝑥𝑥), the value of the function at 𝑥𝑥 + 𝜖𝜖, with 𝜖𝜖 ~ 0, can 
be expressed as 

𝑓𝑓(𝑥𝑥 + 𝜖𝜖) = 𝑓𝑓(𝑥𝑥) + 𝜖𝜖 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

+ 1
2!
𝜖𝜖2 𝑑𝑑

2𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+ 1
3!
𝜖𝜖3 𝑑𝑑

3𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥3

+ ⋯   

= �1 + 𝜖𝜖 𝑑𝑑
𝑑𝑑𝑑𝑑

+ 1
2!
𝜖𝜖2 𝑑𝑑2

𝑑𝑑𝑥𝑥2
+ 1

3!
𝜖𝜖3 𝑑𝑑3

𝑑𝑑𝑥𝑥3
+ ⋯�𝑓𝑓(𝑥𝑥) = exp (𝜖𝜖 𝑑𝑑

𝑑𝑑𝑑𝑑
)𝑓𝑓(𝑥𝑥).  

For a function with a 3D position vector  𝑓𝑓(𝑟𝑟), the Taylor expansion can be written 
as, 

𝑓𝑓(𝑟𝑟 + 𝜖𝜖) = 𝑓𝑓�𝑥𝑥 + 𝜖𝜖𝑥𝑥 ,𝑦𝑦 + 𝜖𝜖𝑦𝑦, 𝑧𝑧 + 𝜖𝜖𝑧𝑧� 

= 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) + �𝜖𝜖𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜖𝜖𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜖𝜖𝑧𝑧
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 

+
1
2!�

𝜖𝜖𝑥𝑥2
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

+ 𝜖𝜖𝑦𝑦2
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

+ 𝜖𝜖𝑧𝑧2
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑧𝑧2

+ 𝜖𝜖𝑥𝑥𝜖𝜖𝑦𝑦
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝜖𝜖𝑦𝑦𝜖𝜖𝑧𝑧
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝜖𝜖𝑧𝑧𝜖𝜖𝑥𝑥
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

+⋯ 

= 𝑓𝑓(𝑟𝑟) + 𝜖𝜖 ∙ ∇𝑓𝑓(𝑟𝑟) +
1
2!

(𝜖𝜖 ∙ ∇)2𝑓𝑓(𝑟𝑟) +
1
3!

(𝜖𝜖 ∙ ∇)3𝑓𝑓(𝑟𝑟) + ⋯ 

Therefore, 

𝑓𝑓(𝑟𝑟 + 𝜖𝜖) = exp (𝜖𝜖 ∙ ∇)𝑓𝑓(𝑟𝑟). 
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Force and Torque on a Dipole 

The force acting on the dipole when it is placed in an external electric field can be 
determined by calculating the electrostatic energy 𝑈𝑈𝑑𝑑 of the dipole, as shown in 
Figure 4.2,  

          𝑈𝑈𝑑𝑑 = 𝑈𝑈+ + 𝑈𝑈− = 𝑞𝑞𝑞𝑞(𝑟𝑟+)− 𝑞𝑞𝑞𝑞(𝑟𝑟−) = 𝑞𝑞𝑞𝑞 �𝑟𝑟 + 𝑑⃗𝑑
2
� − 𝑞𝑞𝑞𝑞 �𝑟𝑟 − 𝑑⃗𝑑

2
�.       (4.9) 

In general, 𝑟𝑟 ≫ 𝑑𝑑, we can use a Taylor expansion to approximate the potentials at 
the two positions, 

          �
𝜑𝜑 �𝑟𝑟 + 𝑑⃗𝑑

2
� ≈ 𝜑𝜑(𝑟𝑟) + 𝑑⃗𝑑

2
∙ ∇𝜑𝜑(𝑟𝑟)

𝜑𝜑 �𝑟𝑟 − 𝑑⃗𝑑
2
� ≈ 𝜑𝜑(𝑟𝑟) − 𝑑⃗𝑑

2
∙ ∇𝜑𝜑(𝑟𝑟)

.       (4.10) 

 
Fig. 4.3 The interaction between two-point dipoles. 

Substituting these approximations back into Equation 4.9, we find, 

         𝑈𝑈𝑑𝑑 = 𝑞𝑞𝑑𝑑 ∙ ∇𝜑𝜑(𝑟𝑟) = −𝑝𝑝 ∙ 𝐸𝐸�⃗ (𝑟𝑟).          (4.11) 

This relationship indicates that the potential energy of the dipole in the electric 
field depends on the alignment of the dipole moment 𝑝𝑝 with the electric field 𝐸𝐸�⃗ (𝑟𝑟). 

The force 𝐹⃗𝐹𝑑𝑑  acting on the dipole can be written as, 

 𝐹⃗𝐹𝑑𝑑 = −∇𝑈𝑈𝑑𝑑 = ∇�𝑝⃗𝑝 ∙ 𝐸𝐸�⃗ (𝑟𝑟)� = (𝑝𝑝 ∙ ∇)𝐸𝐸�⃗ (𝑟𝑟).         (4.12) 

This equation shows that the force on the dipole is proportional to the gradient of 
the electric field, indicating that the dipole experiences a net force in non-uniform 
electric fields. 
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Similar, the torque 𝑁𝑁��⃗  acting on the dipole can be expressed as, 

𝑁𝑁��⃗ = 𝑝𝑝 × 𝐸𝐸�⃗ .        (4.13) 

Interaction Between Two Point Dipoles 

To investigate the interaction of two point dipoles, as shown in Figure 4.3, the 
dipole 𝑝𝑝1 generates an electric potential 𝜑𝜑1(𝑟𝑟2) and an electric field 𝐸𝐸�⃗1(𝑟𝑟2) at the 
position of dipole 𝑝𝑝2 according to Equations 4.5 and 4.7, 

      𝜑𝜑1(𝑟𝑟2) = 𝑝⃗𝑝1∙𝑟𝑟21
4𝜋𝜋𝜀𝜀0|𝑟𝑟21|3,       (4.14) 

𝐸𝐸�⃗1(𝑟𝑟2) = 1
4𝜋𝜋𝜀𝜀0

�3𝑟̂𝑟21(𝑟̂𝑟21∙𝑝⃗𝑝1)−𝑝⃗𝑝1
|𝑟𝑟21|3 � ,       (4.15) 

where 𝑟𝑟21 = 𝑟𝑟2 − 𝑟𝑟1 . According to Equation 4.11, the interaction energy 
𝑈𝑈12 between the two dipoles can be written as, 

𝑈𝑈12 = −𝑝𝑝2 ∙ 𝐸𝐸�⃗1 = 1
4𝜋𝜋𝜀𝜀0

�𝑝⃗𝑝1∙𝑝⃗𝑝2−3(𝑟̂𝑟21∙𝑝⃗𝑝2)(𝑟̂𝑟21∙𝑝⃗𝑝1)
|𝑟𝑟21|3 �,      (4.16) 

Finally, the electrostatic force 𝐹⃗𝐹12 acting on dipole 𝑝𝑝2 can be written as, 

     𝐹⃗𝐹12 = (𝑝𝑝2 ∙ ∇2)𝐸𝐸�⃗1(𝑟𝑟2),       (4.17) 

where ∇2 is the gradient operator with respect to 𝑟𝑟2. 

 
Fig. 4.4 (a) A linear and (b) planar quadrupole configuration. (c) The interaction 

between two point dipoles. 

4.1.2 The point quadrupole  
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An electric quadrupole consists of a spatial distribution of two dipoles, typically 
arranged in such a way that their combined effects yield a net charge and dipole 
moment of zero. This arrangement can take on two configurations, as illustrated in 
Figure 4.4. In the linear quadrupole configuration (shown in Figure 4.4a), the two 
dipoles are aligned along the same straight line. In contrast, the nonlinear 
quadrupole configuration (depicted in Figure 4.4b) has the dipoles oriented along 
different axes.   

The quadrupole moment is represented by a second-rank tensor 𝑸𝑸,  

𝑸𝑸 = �
𝑄𝑄𝑥𝑥𝑥𝑥 𝑄𝑄𝑥𝑥𝑥𝑥 𝑄𝑄𝑥𝑥𝑥𝑥
𝑄𝑄𝑦𝑦𝑦𝑦 𝑄𝑄𝑦𝑦𝑦𝑦 𝑄𝑄𝑦𝑦𝑦𝑦
𝑄𝑄𝑧𝑧𝑧𝑧 𝑄𝑄𝑧𝑧𝑧𝑧 𝑄𝑄𝑧𝑧𝑧𝑧

� ,       (4.18) 

with its components defined as follows   

    �
𝑄𝑄𝑥𝑥𝑥𝑥 = ∑ 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖2   𝑁𝑁

𝑗𝑗=1

𝑄𝑄𝑥𝑥𝑥𝑥 = ∑ 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝑁𝑁
𝑗𝑗=1

.       (4.19) 

For a quadrupole formed from four point charges, as shown in Figure 4.4, we set 
𝑁𝑁 = 4. For example, in the case of a linear quadrupole shown in Figure 4.4c, we 
can specify the positions of the charges, 

�
𝑞𝑞1 = −𝑞𝑞,  𝑟𝑟1 = (0,0,𝑎𝑎)   
𝑞𝑞2 = 2𝑞𝑞,  𝑟𝑟2 = (0,0,0)     
𝑞𝑞3 = −𝑞𝑞,  𝑟𝑟3 = (0,0,−𝑎𝑎)

. 

Calculating the components of the quadrupole moment yields, 

𝑄𝑄𝑥𝑥𝑥𝑥 = 𝑄𝑄𝑦𝑦𝑦𝑦 = 0,  

     𝑄𝑄𝑧𝑧𝑧𝑧 = −𝑞𝑞𝑎𝑎2 + 0 − 𝑞𝑞𝑎𝑎2 = −2𝑞𝑞𝑎𝑎2, 

𝑄𝑄𝑥𝑥𝑥𝑥 = 𝑄𝑄𝑦𝑦𝑦𝑦 = 𝑄𝑄𝑦𝑦𝑦𝑦 = 𝑄𝑄𝑧𝑧𝑧𝑧 = 𝑄𝑄𝑄𝑄𝑥𝑥𝑥𝑥 = 𝑄𝑄𝑧𝑧𝑧𝑧 = 0. 

Thus, the quadrupole moment tensor becomes,  

𝑸𝑸 = �
0 0 0
0 0 0
0 0 −2𝑞𝑞𝑎𝑎2

� ,       (4.20) 

The electrostatic potential 𝜑𝜑𝑞𝑞(𝑟𝑟) generated by a linear quadrupole shown in 
Figure 4.4c can be calculated as, 

        𝜑𝜑𝑞𝑞(𝑟𝑟) = −𝑞𝑞
4𝜋𝜋𝜀𝜀0𝑟𝑟1

+ 2𝑞𝑞
4𝜋𝜋𝜀𝜀0𝑟𝑟

− −𝑞𝑞
4𝜋𝜋𝜀𝜀0𝑟𝑟2

= 2𝑞𝑞
4𝜋𝜋𝜀𝜀0𝑟𝑟

− 𝑞𝑞
4𝜋𝜋𝜀𝜀0

� 1
|𝑟𝑟−𝑎𝑎�⃗ | + 1

|𝑟𝑟+𝑎𝑎�⃗ |�.     (4.21) 

Assume that 𝑎𝑎 ≪ 𝑟𝑟 and apply a Taylor expansion, we fin 

       𝜑𝜑𝑞𝑞(𝑟𝑟) = 2𝑞𝑞
4𝜋𝜋𝜀𝜀0𝑟𝑟

− 𝑞𝑞
4𝜋𝜋𝜀𝜀0

� 1
�𝑟𝑟2+𝑎𝑎2−2𝑎𝑎�⃗ ∙𝑟𝑟

+ 1
�𝑟𝑟2+𝑎𝑎2+2𝑎𝑎�⃗ ∙𝑟𝑟

�  
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= 𝑞𝑞
8𝜋𝜋𝜀𝜀0𝑟𝑟

𝑎𝑎2−2𝑎𝑎�⃗ ∙𝑟𝑟
𝑟𝑟2

+ 𝑞𝑞
8𝜋𝜋𝜀𝜀0𝑟𝑟

𝑎𝑎2+2𝑎𝑎�⃗ ∙𝑟𝑟
𝑟𝑟2

− 𝑞𝑞
4𝜋𝜋𝜀𝜀0𝑟𝑟

3
8
��𝑎𝑎

2−2𝑎𝑎�⃗ ∙𝑟𝑟
𝑟𝑟2

�
2

+ �𝑎𝑎
2+2𝑎𝑎�⃗ ∙𝑟𝑟
𝑟𝑟2

�
2

 �  

= 𝑞𝑞𝑎𝑎2

4𝜋𝜋𝜀𝜀0𝑟𝑟3
− 3𝑞𝑞(𝑎𝑎�⃗ ∙𝑟𝑟)2

4𝜋𝜋𝜀𝜀0𝑟𝑟5
= 𝑄𝑄𝑧𝑧𝑧𝑧

4𝜋𝜋𝜀𝜀0𝑟𝑟3
(3 cos2 𝜃𝜃 − 1),      (4.22)   

where 𝜃𝜃  is the angle between the vector 𝑎⃗𝑎  (aligned along the z-axis) and the 
position vector 𝑟𝑟.  

For a planar quadrupole with the following arrangement, 

⎩
⎨

⎧𝑞𝑞1 = −𝑞𝑞,  𝑟𝑟1 = (−𝑎𝑎, 0,𝑎𝑎)   
𝑞𝑞2 = +𝑞𝑞,  𝑟𝑟2 = (𝑎𝑎, 0,𝑎𝑎)      
𝑞𝑞3 = −𝑞𝑞,  𝑟𝑟3 = (𝑎𝑎, 0,−𝑎𝑎)   
𝑞𝑞4 = +𝑞𝑞,  𝑟𝑟4 = (−𝑎𝑎, 0,−𝑎𝑎)

. 

The components of the quadrupole moment can be calculated as, 

𝑄𝑄𝑥𝑥𝑥𝑥 = 𝑄𝑄𝑦𝑦𝑦𝑦 = 𝑄𝑄𝑧𝑧𝑧𝑧 = 0, 

𝑄𝑄𝑥𝑥𝑥𝑥 = 𝑄𝑄𝑦𝑦𝑦𝑦 = 𝑄𝑄𝑧𝑧𝑧𝑧 = 𝑄𝑄𝑦𝑦𝑦𝑦 = 0, 

𝑄𝑄𝑥𝑥𝑥𝑥 = 𝑄𝑄𝑧𝑧𝑧𝑧 = 4𝑞𝑞𝑎𝑎2. 

Thus, the quadrupole moment tensor for this configuration is given by, 

𝑸𝑸 = �
0 0 4𝑞𝑞𝑎𝑎2
0 0 0

4𝑞𝑞𝑎𝑎2 0 0
� .       (4.23) 

 
Fig. 4.5 A charged object with a finite volume. 

4.2 Electric Multipole Expansion 
4.2.1 Multipole expansion in Cartesian coordinates 

x

y

z

O

R



Advance Electromagnetism Theory I  ©Yiping Zhao, University of Georgia 

4-8 
 

According to Equation 3.13, for a bulk charge distribution 𝑉𝑉1 shown in Figure 
4.5, the potential 𝜑𝜑(𝑟𝑟) can be expressed as, 

𝜑𝜑(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

∭ 𝜌𝜌�𝑟𝑟′�
|𝑟𝑟−𝑟𝑟′|

𝑑𝑑𝑉𝑉′𝑉𝑉1
.       (3.13)  

Here we position the center of the charge distribution at the origin of the coordinate 
system and assume that the charge distribution is confined within a finite volume 
defined by the maximum radius R (i.e., 𝑟𝑟′ ≤ 𝑅𝑅). When considering a location P at 
position 𝑟𝑟 that is far away from the charged object, i.e., 𝑟𝑟 ≫ 𝑅𝑅, we can expand the 
expression  1

|𝑟𝑟−𝑟𝑟′|
 in Equation 3.13 in terms of 𝑟𝑟′, 

1
|𝑟𝑟−𝑟𝑟′|

= 1
𝑟𝑟
− 𝑟𝑟′ ∙ ∇ 1

𝑟𝑟
+ 1

2
(𝑟𝑟′ ∙ ∇)2 1

𝑟𝑟
+ ⋯         (4.24) 

Therefore, Equation 3.13 can be rewritten as 

𝜑𝜑(𝑟𝑟) =
1

4𝜋𝜋𝜀𝜀0
�� 𝜌𝜌(𝑟𝑟′) �

1
𝑟𝑟
− 𝑟𝑟′ ∙ ∇

1
𝑟𝑟

+
1
2

(𝑟𝑟′ ∙ ∇)2
1
𝑟𝑟

+ ⋯�𝑑𝑑𝑉𝑉′
𝑉𝑉1

� 

=
1

4𝜋𝜋𝜀𝜀0
1
𝑟𝑟
� 𝜌𝜌(𝑟𝑟′)𝑑𝑑𝑉𝑉′

𝑉𝑉1
−

1
4𝜋𝜋𝜀𝜀0

� 𝜌𝜌(𝑟𝑟′)𝑟𝑟′ ∙ ∇
1
𝑟𝑟
𝑑𝑑𝑉𝑉′

𝑉𝑉1
 

+ 1
8𝜋𝜋𝜀𝜀0

∭ 𝜌𝜌(𝑟𝑟′)(𝑟𝑟′ ∙ ∇)2 1
𝑟𝑟
𝑑𝑑𝑉𝑉′ + ⋯𝑉𝑉1

        (4.25) 

Equation 4.25 shows that the potential 𝜑𝜑(𝑟𝑟) can be expressed as a series of 
multipole potential terms: 

1) The monopole term:  
𝜑𝜑𝑚𝑚(𝑟𝑟) = 1

4𝜋𝜋𝜀𝜀0

1
𝑟𝑟∭ 𝜌𝜌(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉1

= 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞
𝑟𝑟
       (4.26) 

where 𝑞𝑞 = ∭ 𝜌𝜌(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉1
 represents the total charge. This term describes 

the potential located at a distance  r generated by a point charge, i.e., this 
is a monopole potential. 

2) The dipole term: 
 𝜑𝜑𝑑𝑑(𝑟𝑟) = − 1

4𝜋𝜋𝜀𝜀0
∇ 1

𝑟𝑟
∙∭ 𝜌𝜌(𝑟𝑟′)𝑟𝑟′𝑑𝑑𝑉𝑉′𝑉𝑉1

= 1
4𝜋𝜋𝜀𝜀0

𝑟𝑟

𝑟𝑟3 ∙ ∭ 𝜌𝜌(𝑟𝑟′)𝑟𝑟′𝑑𝑑𝑉𝑉′𝑉𝑉1
. (4.27) 

Defined the general dipole moment 𝑝𝑝 as, 
        𝑝𝑝 = ∭ 𝜌𝜌(𝑟𝑟′)𝑟𝑟′𝑑𝑑𝑉𝑉′𝑉𝑉1

.      (4.28) 

The potential  𝜑𝜑𝑑𝑑(𝑟𝑟) can be rewritten as, 

𝜑𝜑𝑑𝑑(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

𝑟̂𝑟∙𝑝⃗𝑝
𝑟𝑟2

.      (4.29) 

This term represents the potential due to an electric dipole 𝑝𝑝 at distance r. 

3) The quadrupole term: 
     𝜑𝜑𝑞𝑞(𝑟𝑟) = 1

4𝜋𝜋𝜀𝜀0

1
2∭ 𝜌𝜌(𝑟𝑟′)(𝑟𝑟′ ∙ ∇)2 1

𝑟𝑟
𝑑𝑑𝑉𝑉′𝑉𝑉1

      (4.30) 
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which describes the potential generated by an electric quadrupole 
moment 𝑸𝑸 at distance r. 

 
Mathematical Information 

Let’s investigate the detailed expression for (𝑟𝑟′ ∙ ∇)2 1
𝑟𝑟
: 

(𝑟𝑟′ ∙ ∇)2 1
𝑟𝑟

= �𝑥𝑥′ 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑦𝑦′ 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑧𝑧′ 𝜕𝜕
𝜕𝜕𝜕𝜕
�
2 1
𝑟𝑟
  

   = �𝑥𝑥′2 𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝑦𝑦′2 𝜕𝜕2

𝜕𝜕𝑦𝑦2
+ 𝑧𝑧′2 𝜕𝜕2

𝜕𝜕𝑧𝑧2
+ 2𝑥𝑥′𝑦𝑦′ 𝜕𝜕2

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
+ 2𝑦𝑦′𝑧𝑧′ 𝜕𝜕2

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
+ 2𝑧𝑧′𝑥𝑥′ 𝜕𝜕2

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
� 1
𝑟𝑟
    

Here, 

                                 𝑥𝑥′2 𝜕𝜕2

𝜕𝜕𝑥𝑥2
1
𝑟𝑟

= 𝑥𝑥′2 3𝑥𝑥
2−𝑟𝑟2

𝑟𝑟5
  

 2𝑥𝑥′𝑦𝑦′ 𝜕𝜕2

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
1
𝑟𝑟

= 2𝑥𝑥′𝑦𝑦′ 3𝑥𝑥𝑥𝑥
𝑟𝑟5

  

Without loss of generosity, we can derive other terms in above expression. 
Therefore, 

(𝑟𝑟′ ∙ ∇)2
1
𝑟𝑟 = �𝑥𝑥𝑗𝑗′

2 3𝑥𝑥𝑗𝑗2 − 𝑟𝑟2

𝑟𝑟5

3

𝑗𝑗=1

+ ��𝑥𝑥𝑗𝑗′𝑥𝑥𝑘𝑘′
3𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘
𝑟𝑟5

3

𝑘𝑘≠𝑗𝑗

3

𝑗𝑗=1

 

= ��𝑥𝑥𝑗𝑗′𝑥𝑥𝑘𝑘′
3𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘 − 𝑟𝑟2𝛿𝛿𝑗𝑗𝑗𝑗

𝑟𝑟5

3

𝑘𝑘=1

3

𝑗𝑗=1

 

Here 𝑥𝑥𝑗𝑗′  and 𝑥𝑥𝑗𝑗  represent different components of the position coordinate, i.e., 
𝑥𝑥1′ = 𝑥𝑥′,  𝑥𝑥2′ = 𝑦𝑦′, 𝑥𝑥3′ = 𝑧𝑧′, as well as 𝑥𝑥1 = 𝑥𝑥, 𝑥𝑥2 = 𝑦𝑦, and 𝑥𝑥3 = 𝑧𝑧. 

 
Fig. 4.6 The potential of a charged object can be treated as a superposition of 

potential generated by a point charge 𝑞𝑞, a dipole 𝑝𝑝, a quadrupole 𝑄𝑄, and so on. 

Based on the mathematical investigation of (𝑟𝑟′ ∙ ∇)2 1
𝑟𝑟
, the quadrupole potential 

can be expressed as, 

𝜑𝜑𝑞𝑞(𝑟𝑟) =
1

4𝜋𝜋𝜀𝜀0
1
2
� 𝜌𝜌(𝑟𝑟′)���𝑥𝑥𝑗𝑗′𝑥𝑥𝑘𝑘′

3𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘 − 𝑟𝑟2𝛿𝛿𝑗𝑗𝑗𝑗
𝑟𝑟5

3

𝑘𝑘=1

3

𝑗𝑗=1

� 𝑑𝑑𝑉𝑉′
𝑉𝑉1

 

= 1
4𝜋𝜋𝜀𝜀0

1
𝑟𝑟3
∑ ∑ 3𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘−𝑟𝑟2𝛿𝛿𝑗𝑗𝑗𝑗

𝑟𝑟2
3
𝑘𝑘=1

3
𝑗𝑗=1

1
2∭ 𝜌𝜌(𝑟𝑟′)𝑥𝑥𝑗𝑗′𝑥𝑥𝑘𝑘′ 𝑑𝑑𝑉𝑉′𝑉𝑉1

.     (4.31) 

=

+

-
+++ + + ++

- +

-
…+

- +

-

+ -

+-
+
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Here the quadrupole component 𝑄𝑄𝑗𝑗𝑗𝑗 is defined as, 

𝑄𝑄𝑗𝑗𝑗𝑗 = 1
2∭ 𝜌𝜌(𝑟𝑟′)𝑥𝑥𝑗𝑗′𝑥𝑥𝑘𝑘′ 𝑑𝑑𝑉𝑉′𝑉𝑉1

.      (4.32) 

Thus, Equation 4.31 becomes,  

     𝜑𝜑𝑞𝑞(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

1
𝑟𝑟3∑ ∑

3𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘−𝑟𝑟2𝛿𝛿𝑗𝑗𝑗𝑗
𝑟𝑟2

3
𝑘𝑘=1

3
𝑗𝑗=1 𝑄𝑄𝑗𝑗𝑗𝑗 .      (4.33) 

Combining Equations 4.26, 4.29, and 4.33, the total potential can be expressed as, 

𝜑𝜑(𝑟𝑟) = 𝜑𝜑𝑚𝑚(𝑟𝑟) + 𝜑𝜑𝑑𝑑(𝑟𝑟) + 𝜑𝜑𝑞𝑞(𝑟𝑟) + ⋯ 

=
1

4𝜋𝜋𝜀𝜀0
𝑞𝑞
𝑟𝑟

+
1

4𝜋𝜋𝜀𝜀0
𝑟̂𝑟 ∙ 𝑝𝑝
𝑟𝑟2

+
1

4𝜋𝜋𝜀𝜀0
1
𝑟𝑟3
��

3𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘 − 𝑟𝑟2𝛿𝛿𝑗𝑗𝑗𝑗
𝑟𝑟2

3

𝑘𝑘=1

3

𝑗𝑗=1

𝑄𝑄𝑗𝑗𝑗𝑗 + ⋯ 

= 1
4𝜋𝜋𝜀𝜀0

�𝑞𝑞
𝑟𝑟

+ 𝑟̂𝑟∙𝑝⃗𝑝
𝑟𝑟2

+ 1
𝑟𝑟3
∑ ∑ 3𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘−𝑟𝑟2𝛿𝛿𝑗𝑗𝑗𝑗

𝑟𝑟2
3
𝑘𝑘=1

3
𝑗𝑗=1 𝑄𝑄𝑗𝑗𝑗𝑗 + ⋯�.     (4.34) 

Equation 4.34 shows that the potential generated by any arbitrary charged object 
can be viewed as the superposition of the potentials generated by a monopole with 
a charge q, a dipole with a dipole moment 𝑝𝑝, a quadrupole with a quadrupole 
moment Q, and so on, as shown in the diagram of Figure 4.6. 

 

 
Example 4.1 Find the electric potential of the linear and planar quadrupoles shown in Figure 

4.4a and 4.4b. 

Discussion: Based on Equation 4.33 and the corresponding calculated Q in 
Section 4.1.2, one shall be able to obtain the potentials generated by the linear and 
planar quadrupoles. 

For the linear quadrupole with the quadrupole moment of Equation 4.20, 

𝜑𝜑𝑞𝑞(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

1
𝑟𝑟3 ∑ ∑

3𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘−𝑟𝑟2𝛿𝛿𝑗𝑗𝑗𝑗
𝑟𝑟2

3
𝑘𝑘=1

3
𝑗𝑗=1 𝑄𝑄𝑗𝑗𝑗𝑗 = 1

4𝜋𝜋𝜀𝜀0

1
𝑟𝑟3

3𝑧𝑧2−𝑟𝑟2

𝑟𝑟2 𝑄𝑄𝑧𝑧𝑧𝑧. 

Since 𝑧𝑧 = 𝑟𝑟 cos𝜃𝜃, the above equation becomes, 

𝜑𝜑𝑞𝑞(𝑟𝑟) = 𝑄𝑄𝑧𝑧𝑧𝑧
4𝜋𝜋𝜀𝜀0𝑟𝑟3 (3 cos2𝜃𝜃− 1). 

This is the same as Equation 4.22. 

For the planar quadrupole with the quadrupole moment of Equation 4.23, 

𝜑𝜑𝑞𝑞(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

1
𝑟𝑟3 �

3𝑧𝑧𝑧𝑧
𝑟𝑟2 𝑄𝑄𝑧𝑧𝑧𝑧 + 3𝑥𝑥𝑥𝑥

𝑟𝑟2 𝑄𝑄𝑥𝑥𝑥𝑥� = 𝑄𝑄𝑥𝑥𝑥𝑥
4𝜋𝜋𝜀𝜀0𝑟𝑟3

6𝑧𝑧𝑧𝑧
𝑟𝑟2 = 3𝑄𝑄𝑥𝑥𝑥𝑥

2𝜋𝜋𝜀𝜀0𝑟𝑟3 sin𝜃𝜃 cos𝜃𝜃 sin𝜙𝜙. 
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4.2.2 Multipole expansion in spherical coordinates 

The core of the multipole expansion lies in how we expand  1
|𝑟𝑟−𝑟𝑟′|

 in Equation 
4.24. In fact, one can take a different view on this expansion since 

1
|𝑟𝑟−𝑟𝑟′|

= 1
√𝑟𝑟2+𝑟𝑟′2−2𝑟𝑟𝑟𝑟′ cos𝜃𝜃

= 1
𝑟𝑟

1

�1−2𝑟𝑟′𝑟𝑟 cos𝜃𝜃+�
𝑟𝑟′
𝑟𝑟 �

2.     (4.35) 

Here, 𝑟𝑟 is the distance from the origin to the observation point, 𝑟𝑟′ is the distance 
from the origin to the charge distribution, and 𝜃𝜃 is the angle between 𝑟𝑟 and 𝑟𝑟′. 
Recall from mathematical physics regarding the Legendre polynomial, its 
generating function is, 

 1
√1−2𝑥𝑥𝑥𝑥+𝑡𝑡2

= ∑ 𝑃𝑃𝑙𝑙(𝑥𝑥)𝑡𝑡𝑙𝑙∞
𝑙𝑙=0 .       (4.36) 

 
Legendre Polynomials 

The first 5 Legendre polynomials (𝑥𝑥 ∈ [−1,1]) are: 
𝑃𝑃0(𝑥𝑥) = 1
𝑃𝑃1(𝑥𝑥) = 𝑥𝑥

𝑃𝑃2(𝑥𝑥) = 1
2

(3𝑥𝑥2 − 1)

𝑃𝑃3(𝑥𝑥) = 1
2

(5𝑥𝑥3 − 3𝑥𝑥)

𝑃𝑃4(𝑥𝑥) = 1
8

(35𝑥𝑥4 − 30𝑥𝑥2 + 3)
⋯

  

Clearly,  

𝑃𝑃𝑙𝑙(−𝑥𝑥) = (−1)𝑙𝑙𝑃𝑃𝑙𝑙(𝑥𝑥)  
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Comparing Equation 4.36 to Equation 4.35, we can set 𝑡𝑡 = 𝑟𝑟′
𝑟𝑟

 and 𝑥𝑥 = cos𝜃𝜃. 
Thus, we find 

1
|𝑟𝑟−𝑟𝑟′|

= 1
𝑟𝑟
∑ 𝑃𝑃𝑙𝑙(cos𝜃𝜃) �𝑟𝑟′

𝑟𝑟
�
𝑙𝑙

∞
𝑙𝑙=0 .       (4.37) 

Inserting Equation 4.37 in Equation 3.13, we have 

𝜑𝜑(𝑟𝑟) =
1

4𝜋𝜋𝜀𝜀0
� 𝜌𝜌(𝑟𝑟′)

1
𝑟𝑟
�𝑃𝑃𝑙𝑙(cos𝜃𝜃)�

𝑟𝑟′

𝑟𝑟 �
𝑙𝑙∞

𝑙𝑙=0

𝑑𝑑𝑉𝑉′
𝑉𝑉1

 

=
1

4𝜋𝜋𝜀𝜀0𝑟𝑟
�� 𝜌𝜌(𝑟𝑟′)𝑃𝑃𝑙𝑙(cos𝜃𝜃)�

𝑟𝑟′

𝑟𝑟 �
𝑙𝑙

𝑑𝑑𝑉𝑉′
𝑉𝑉1

∞

𝑙𝑙=0

 

= 1
4𝜋𝜋𝜀𝜀0𝑟𝑟

�∭ 𝜌𝜌(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉1
+ ∭ 𝜌𝜌(𝑟𝑟′)𝑃𝑃1(cos𝜃𝜃) 𝑟𝑟′

𝑟𝑟
𝑑𝑑𝑉𝑉′𝑉𝑉1

+

   ∭ 𝜌𝜌(𝑟𝑟′)𝑃𝑃2(cos𝜃𝜃) �𝑟𝑟′
𝑟𝑟
�
2
𝑑𝑑𝑉𝑉′𝑉𝑉1

+ ∭ 𝜌𝜌(𝑟𝑟′)𝑃𝑃3(cos𝜃𝜃) �𝑟𝑟′
𝑟𝑟
�
3
𝑑𝑑𝑉𝑉′𝑉𝑉1

+ ⋯� .   (4.38) 

Breaking this down, we can express the potential as a series of multipole 
contributions: 

        Monopole potential:   𝜑𝜑𝑚𝑚(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞
𝑟𝑟
.                               (4.26) 

Dipole potential:  𝜑𝜑𝑑𝑑(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0𝑟𝑟2

∭ 𝜌𝜌(𝑟𝑟′)𝑟𝑟′ cos𝜃𝜃 𝑑𝑑𝑉𝑉′𝑉𝑉1
.     (4.39) 

Quadrupole potential: 𝜑𝜑𝑞𝑞(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0𝑟𝑟3

 ∭ 𝜌𝜌(𝑟𝑟′)𝑟𝑟′2 (3cos2 𝜃𝜃−1)
2

𝑑𝑑𝑉𝑉′𝑉𝑉1
.           (4.40) 

Octupole potential: 𝜑𝜑𝑂𝑂(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0𝑟𝑟4

 ∭ 𝜌𝜌(𝑟𝑟′)𝑟𝑟′3 (5 cos3 𝜃𝜃−3cos𝜃𝜃)
2

𝑑𝑑𝑉𝑉′𝑉𝑉1
.       (4.41) 

… 

4.2.3 The property of a general dipole 

According to Equation 4.28, the general definition for a dipole moment is given 
by 

           𝑝𝑝 = ∭ 𝜌𝜌(𝑟𝑟′)𝑟𝑟′𝑑𝑑𝑉𝑉′𝑉𝑉1
.      (4.28) 

The corresponding potential for a dipole in a region far from the charge distribution 
is  

 𝜑𝜑𝑑𝑑(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

𝑟̂𝑟∙𝑝⃗𝑝
𝑟𝑟2

     for 𝑟𝑟 ≫ 𝑅𝑅.      (4.29) 

The corresponding electric field is 

       𝐸𝐸�⃗ 𝑑𝑑(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

�3𝑟̂𝑟(𝑟̂𝑟∙𝑝⃗𝑝)−𝑝⃗𝑝
𝑟𝑟3

�   for 𝑟𝑟 ≫ 𝑅𝑅.     (4.42) 
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This indicates that in the presence of an external electric field, the dipole 
experiences not only a direct electrostatic force but also a dipole force, 

   𝐹⃗𝐹𝑑𝑑(𝑟𝑟) = ∇�𝑝𝑝 ∙ 𝐸𝐸�⃗ 𝑒𝑒𝑒𝑒𝑒𝑒�.        (4.43) 

Here 𝐸𝐸�⃗ 𝑒𝑒𝑒𝑒𝑒𝑒 is the external electric field applied to the dipole. The torque acting on 
the charged object can be written as, 

 𝑁𝑁��⃗ = 𝑝𝑝 × 𝐸𝐸�⃗ + 𝑟𝑟 × 𝐹⃗𝐹𝑒𝑒.        (4.44) 

Interaction energy of two dipoles 

The interaction energy 𝑈𝑈12 between two dipoles can be calculated as 

𝑈𝑈12 = −𝑝𝑝2 ∙ 𝐸𝐸�⃗1 = 1
4𝜋𝜋𝜀𝜀0

�𝑝⃗𝑝1∙𝑝⃗𝑝2−3(𝑟̂𝑟21∙𝑝⃗𝑝2)(𝑟̂𝑟21∙𝑝⃗𝑝1)
|𝑟𝑟21|3 �,      (4.16) 

and the total interaction energy 𝑈𝑈𝑑𝑑 for multiple dipoles can be expressed as, 

𝑈𝑈𝑑𝑑 = 1
4𝜋𝜋𝜀𝜀0

1
2
∑ ∑ �𝑝⃗𝑝𝑗𝑗∙𝑝⃗𝑝𝑘𝑘−3(𝑟̂𝑟𝑘𝑘𝑘𝑘∙𝑝⃗𝑝𝑗𝑗)�𝑟̂𝑟𝑘𝑘𝑘𝑘∙𝑝⃗𝑝𝑘𝑘�

�𝑟𝑟𝑘𝑘𝑘𝑘�
3 �𝑁𝑁

𝑘𝑘≠𝑗𝑗
𝑁𝑁
𝑗𝑗=1 .      (4.45) 

Here 𝑟𝑟𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑘𝑘 − 𝑟𝑟𝑗𝑗 and 𝑟̂𝑟𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑘𝑘𝑘𝑘/𝑟𝑟𝑘𝑘𝑘𝑘. 

Dipole moment of discrete distributed charges 

For a system of 𝑁𝑁 point charges, with charge 𝑞𝑞𝑗𝑗  located at 𝑟𝑟𝑗𝑗 = (𝑥𝑥𝑗𝑗,𝑦𝑦𝑗𝑗 , 𝑧𝑧𝑗𝑗), the 
dipole moment can be written as,  

𝑝𝑝 = (𝑝𝑝𝑥𝑥 ,𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧),         (4.46) 

with 

        �
𝑝𝑝𝑥𝑥 = ∑ 𝑞𝑞𝑗𝑗𝑥𝑥𝑗𝑗𝑁𝑁

𝑗𝑗=1

𝑝𝑝𝑦𝑦 = ∑ 𝑞𝑞𝑗𝑗𝑦𝑦𝑗𝑗𝑁𝑁
𝑗𝑗=1

𝑝𝑝𝑧𝑧 = ∑ 𝑞𝑞𝑗𝑗𝑧𝑧𝑗𝑗𝑁𝑁
𝑗𝑗=1

 .       (4.46’) 

Electric dipole layer 

An electric dipole layer can be considered as a layer of dipoles distributed on a 
surface. Examples include cell membranes, material interfaces, electric double 
layers, and colloidal particles. As shown in Figure 4.7, a cellular membrane often 
consists of lipid molecules arranged in pairs, forming a bilayer with hydrophilic 
ends facing outward and hydrophobic tails inward, with a thickness of 
approximately 5 nm. Typically, the membrane maintains an electrical potential 
difference across it, usually around 70 mV in animal cells. This behavior can be 
modeled as two parallel flat sheets with uniform charge and a constant electric 
field between them, where the two plates are treated as a dipole layer. 

At the interface between two materials with different electrical properties, electric 
dipoles may be induced or aligned, commonly occurring in dielectric materials 
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where charges within the material can separate, creating a dipole moment, details 
see Chapter 6. 

In electrochemistry and colloidal science, for a charged surface immersed in an 
electrolyte solution, an electric dipole layer can be formed at the interface between 
the charged surface (solid or liquid) and an electrolyte solution. The Stern layer in 
the electric double layer often behaves like a layer of electric dipoles. 

Considering an area S in the dipole layer, the total dipole moment can be written 
as 𝑝𝑝𝑆𝑆 = 𝑞𝑞𝑆𝑆𝑑𝑑. We can define a surface dipole moment density 

    𝜏𝜏 = 𝑝⃗𝑝𝑆𝑆
𝑆𝑆

= 𝑞𝑞𝑆𝑆𝑑⃗𝑑
𝑆𝑆

= 𝜎𝜎𝑑𝑑.        (4.47) 

where 𝜎𝜎 is the surface charge density. Alternatively, we can express 𝜏𝜏 as 

𝜏𝜏 = 𝑑𝑑𝑝⃗𝑝𝑆𝑆
𝑑𝑑𝑑𝑑

.        (4.48) 

Taking a small area 𝑑𝑑𝑑𝑑 as shown in Figure 4.7b, we can calculate the potential 
𝑑𝑑𝜑𝜑𝑑𝑑 it generated at point P, 

 𝑑𝑑𝜑𝜑𝑑𝑑 = 1
4𝜋𝜋𝜀𝜀0

𝑟𝑟∙𝑑𝑑𝑝⃗𝑝
𝑟𝑟3

= 1
4𝜋𝜋𝜀𝜀0

𝑟𝑟∙𝜏𝜏�⃗
𝑟𝑟3
𝑑𝑑𝑑𝑑.       (4.49) 

Therefore, the total potential generated by the dipole layer at location P can be 
written as, 

    𝜑𝜑𝑑𝑑 = ∬ 1
4𝜋𝜋𝜀𝜀0

𝑟𝑟∙𝜏𝜏�⃗
𝑟𝑟3
𝑑𝑑𝑑𝑑𝑆𝑆 .       (4.50) 

The potential jump across a dipole layer is given by, 

       ∆𝜑𝜑 = 𝐸𝐸𝑖𝑖𝑖𝑖𝑑𝑑 = 𝜏𝜏
𝜀𝜀0

,        (4.51) 

where 𝐸𝐸𝑖𝑖𝑖𝑖 is the electric field between two charged layers, expressed as 𝐸𝐸𝑖𝑖𝑖𝑖 = 𝜎𝜎
𝜀𝜀0

. 

 

 

 

 
Fig. 4.7 (a) The cell membrane structure and (b) a simple bi-layer charged 

model. 

Hydrophilic heads

Hydrophobic 
tails

Hydrophilic heads

+ + + + + + + + + + + + + + + + + + + + + + + + +

(a)     (b)
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Example 4.2 The charge distribution of a colloidal electro-double layer: A charged colloid is 

immersed in a electrolyte solution, what is the charge distribution away from the 
surface of the colloid? 

 
Fig. 4.8 A uniformly charged surface in an electrolyte with a charge distribution. 

Discussion: Assume that the charged colloid surface is an infinitely flat surface as 
shown in Figure 4.8a, and due to electrostatic interaction, there is a charge density 
distribution 𝜌𝜌(𝑥𝑥) in the electrolyte solution. The electrostatic potential  𝜑𝜑(𝑥𝑥) shall 
satisfy the Poisson’s equation,  

𝑑𝑑2𝜑𝜑(𝑥𝑥)
𝑑𝑑𝑥𝑥2

= −𝜌𝜌(𝑥𝑥)
𝜀𝜀

. 

Let’s consider how to find 𝜌𝜌(𝑥𝑥). If the entire system is under thermal equilibrium, 
the charged particle in the solution shall follow the Boltzmann distribution, i.e., 
the number 𝑛𝑛(𝑥𝑥) of the charged particle shall follow, 

𝑛𝑛(𝑥𝑥) = 𝑛𝑛0𝑒𝑒−𝑈𝑈(𝑥𝑥)/𝑘𝑘𝐵𝐵𝑇𝑇. 

Assume that in the electrolyte, there are two different ions, the negative ions carry 
a charge of −𝑧𝑧𝑧𝑧, and each positive ion has +𝑧𝑧𝑧𝑧 charge. Therefore, the electric 
potential energy for negative and positive ions are, 

�
𝑈𝑈+(𝑥𝑥) = 𝑧𝑧𝑧𝑧𝑧𝑧(𝑥𝑥)   
𝑈𝑈−(𝑥𝑥) = −𝑧𝑧𝑧𝑧𝑧𝑧(𝑥𝑥). 

Therefore, the numbers of positive and negative ions 𝑛𝑛±(𝑥𝑥) can be expressed as, 

�𝑛𝑛+
(𝑥𝑥) = 𝑛𝑛0𝑒𝑒−𝑧𝑧𝑧𝑧𝑧𝑧(𝑥𝑥)/𝑘𝑘𝐵𝐵𝑇𝑇   

𝑛𝑛−(𝑥𝑥) = 𝑛𝑛0𝑒𝑒𝑧𝑧𝑧𝑧𝑧𝑧(𝑥𝑥)/𝑘𝑘𝐵𝐵𝑇𝑇     
. 

Thus, the charge density can be written as, 

+
+
+
+
+
+
+
+
+
+
+
+
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𝜌𝜌(𝑥𝑥) = 𝑧𝑧𝑧𝑧𝑛𝑛+(𝑥𝑥) − 𝑧𝑧𝑧𝑧𝑛𝑛−(𝑥𝑥) = 𝑒𝑒𝑛𝑛0�𝑒𝑒−𝑧𝑧𝑧𝑧𝑧𝑧(𝑥𝑥)/𝑘𝑘𝐵𝐵𝑇𝑇 − 𝑒𝑒𝑧𝑧𝑧𝑧𝑧𝑧(𝑥𝑥)/𝑘𝑘𝐵𝐵𝑇𝑇�. 

Therefore, the Poisson’s equation changes to 

𝑑𝑑2𝜑𝜑(𝑥𝑥)
𝑑𝑑𝑥𝑥2

= −𝑧𝑧𝑧𝑧𝑛𝑛0
𝜀𝜀
�𝑒𝑒−

𝑧𝑧𝑧𝑧𝑧𝑧(𝑥𝑥)
𝑘𝑘𝐵𝐵𝑇𝑇 − 𝑒𝑒

𝑧𝑧𝑧𝑧𝑧𝑧(𝑥𝑥)
𝑘𝑘𝐵𝐵𝑇𝑇 � = 2𝑧𝑧𝑧𝑧𝑛𝑛0

𝜀𝜀
sinh �𝑧𝑧𝑧𝑧𝑧𝑧(𝑥𝑥)

𝑘𝑘𝐵𝐵𝑇𝑇
�. 

Multiply 2 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 at both sides of above equation and integrate, we have 

�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

= 4𝑘𝑘𝐵𝐵𝑇𝑇𝑛𝑛0
𝜀𝜀

cosh �𝑧𝑧𝑧𝑧𝑧𝑧(𝑥𝑥)
𝑘𝑘𝐵𝐵𝑇𝑇

� + 𝐶𝐶. 

Here 𝐶𝐶 is a constant. Let’s consider the boundary condition, i.e., at 𝑥𝑥 → ∞, 𝜑𝜑 →
0, 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0, and consider cosh(0) = 1, above equation changes to 

�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

= 4𝑘𝑘𝐵𝐵𝑇𝑇𝑛𝑛0
𝜀𝜀

�cosh(𝑧𝑧𝑧𝑧𝑧𝑧
𝑘𝑘𝐵𝐵𝑇𝑇

)− 1�. 

Since cosh(2𝑦𝑦) − 1 = 2 sinh2 𝑦𝑦 and 𝜑𝜑(𝑥𝑥) is a monotonical decreasing function 
with x, above equation can be rewritten as, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −�8𝑛𝑛0𝑘𝑘𝐵𝐵𝑇𝑇
𝜀𝜀

�
1/2

sinh � 𝑧𝑧𝑧𝑧𝑧𝑧
2𝑘𝑘𝐵𝐵𝑇𝑇

�. 

Integrate both sides of above equation, and we obtain the solution of above first 
order ordinary differentiate equation is, 

tanh � 𝑒𝑒𝑒𝑒
4𝑘𝑘𝐵𝐵𝑇𝑇

� = 𝑣𝑣𝑒𝑒−𝜅𝜅𝜅𝜅. 

Here 𝜅𝜅 = �𝑛𝑛0𝑧𝑧
2𝑒𝑒2

𝜀𝜀𝑘𝑘𝐵𝐵𝑇𝑇
�
1/2

 and 𝑣𝑣 = tanh � 𝑒𝑒𝜑𝜑0
4𝑘𝑘𝐵𝐵𝑇𝑇

� , where 𝜑𝜑0 = 𝜑𝜑(𝑥𝑥 = 0)  is the 
potential at 𝑥𝑥 = 0.  
 

The above theoretical derivation and model is called Debye-Hückel theory for 
double layer. Based on this theory, multiple interesting properties can be obtained:   

(1) Debye Length: The Debye length is a measure of the screening length of 
electrostatic interactions in the solution. It is inversely proportional to the square 
root of the ion concentration and is a key parameter in understanding the extent of 
the electrical double layer. 1 Debye length defines the thickness of the Stern layer. 

(2) Ionic Strength: The ionic strength of a solution is a measure of the 
concentration of ions in the solution. The Debye-Hückel theory relates the ionic 
strength to the Debye length and the charge of the ions in the solution. 

(3) Potential at the Stern Layer: The theory allows the calculation of the 
electric potential at the inner Helmholtz plane or Stern layer, which is the region 
where ions are tightly bound to the surface. 
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(4) Surface Potential (ζ (zeta)-potential): The ζ-potential represents the 
electrokinetic potential at the slipping plane in the diffuse part of the electrical 
double layer. It is related to the surface charge and the potential drop across the 
diffuse layer. 

(5) Electrophoretic Mobility: The Debye-Hückel theory provides insights into 
the electrophoretic mobility of charged particles in colloidal systems. It describes 
the motion of charged particles under the influence of an electric field. 

(6) Activity Coefficients: The theory incorporates activity coefficients, which 
describe the deviation of ion behavior from ideal behavior in solutions. These 
coefficients are crucial for understanding the non-ideality of electrolyte solutions. 

(7) Donnan Equilibrium: The theory can be extended to understand the 
Donnan equilibrium, which describes the distribution of ions between two 
compartments separated by a semipermeable membrane. 

(8) Dielectric Constant Effects: The Debye-Hückel theory takes into account 
the dielectric constant of the medium, influencing the strength of electrostatic 
interactions. 

Based on the potential curve 𝜑𝜑(𝑥𝑥), the double layer consists of two main regions: 
the Stern layer (also known as the inner Helmholtz plane) and the diffuse layer. As 
shown in Figure 4.8b, the Stern layer is the region where ions are strongly 
adsorbed or specifically bound to the charged surface. The Stern layer is 
considered compact and consists of ions that are in immediate proximity to the 
charged surface. The adsorbed ions form a dense layer, and this region is 
sometimes analogously referred to as a "bound layer." Beyond the Stern layer, 
there is a region known as the diffuse layer, where ions are distributed more 
randomly and extend into the bulk solution. The diffuse layer is characterized by 
a decrease in ion concentration with increasing distance from the charged surface. 
The Stern layer, with its adsorbed ions, can be likened to a layer of dipoles formed 
by the aligned or oriented charges on the surface. This is analogous to a dipole 
layer in which charges have a specific orientation. The diffuse layer, with its 
distribution of ions, contributes to the overall polarization of the solution 
surrounding the charged surface. This polarization effect can also be represented 
as a layer of induced dipoles. 

4.2.2 The property of a general quadrupole 

Based on the electric multipole expansion, the potential generated by a quadrupole 
can be expressed by Equation 4.33, 

 𝜑𝜑𝑞𝑞(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

1
𝑟𝑟3 ∑ ∑

3𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘−𝑟𝑟2𝛿𝛿𝑗𝑗𝑗𝑗
𝑟𝑟2

3
𝑘𝑘=1

3
𝑗𝑗=1 𝑄𝑄𝑗𝑗𝑗𝑗 ,      (4.33) 

with 𝑄𝑄𝑗𝑗𝑗𝑗 as the component of the electric quadrupole moment, 

𝑄𝑄𝑗𝑗𝑗𝑗 = 1
2∭ 𝜌𝜌(𝑟𝑟′)𝑥𝑥𝑗𝑗′𝑥𝑥𝑘𝑘′ 𝑑𝑑𝑉𝑉′𝑉𝑉1

.      (4.32) 
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As shown in Equation 4.32, 𝑄𝑄𝑗𝑗𝑗𝑗 depends solely on the charge distribution, not the 
coordinates chosen, which means it remains invariant under coordinate 
transformations. Additionally, due to the symmetrical nature of the quadrupole 
moment, we have the property 𝑄𝑄𝑗𝑗𝑗𝑗 = 𝑄𝑄𝑘𝑘𝑘𝑘. 

Force and Torque on the Quadrupole in an External Electric Field 

When a quadrupole is placed in an external electric field 𝐸𝐸�⃗ , it experiences a force 
that can be expressed as, 

          𝐹⃗𝐹𝑞𝑞 = ∑ ∑ 𝑄𝑄𝑗𝑗𝑗𝑗∇𝑗𝑗∇𝑘𝑘𝐸𝐸�⃗3
𝑘𝑘=1

3
𝑗𝑗=1 .       (4.52) 

where ∇𝑗𝑗  and ∇𝑘𝑘  represent the gradient operators acting on the j-th and k-th 
components of the electric field. This equation indicates that the force on the 
quadrupole is influenced by the spatial variation of the electric field, as the 
quadrupole moment interacts with the gradients of the electric field components. 

The torque 𝑁𝑁 acting on the quadrupole can be formulated as, 

𝑁𝑁��⃗ = 2(𝑸𝑸 ∙ ∇) × 𝐹⃗𝐹 + 𝑟𝑟 × 𝐹⃗𝐹.      (4.53) 

This expression shows that the torque arises not only from the force acting on the 
quadrupole but also from how the quadrupole moment interacts with the electric 
field. The first term captures the contribution from the quadrupole moment and its 
interaction with the field gradients, while the second term accounts for the torque 
due to the force applied at a distance 𝑟𝑟 from the origin. 

The interaction energy 𝑈𝑈𝑞𝑞 of the quadrupole in the external electric field can be 
expressed as, 

𝑈𝑈𝑞𝑞 = −∑ ∑ 𝑄𝑄𝑗𝑗𝑗𝑗∇𝑗𝑗𝐸𝐸𝑘𝑘(𝑟𝑟)3
𝑘𝑘=1

3
𝑗𝑗=1 .     (4.54) 

This equation illustrates that the interaction energy is a function of the quadrupole 
moment and the gradients of the electric field. The negative sign indicates that the 
system will seek a lower energy state, meaning that the quadrupole will tend to 
align in a way that minimizes its potential energy within the field. 

 
 
 

In-class Activity 
4-1. Derive that the energy of a point dipole in an external electric field is 𝑈𝑈𝐷𝐷 =

−𝑝𝑝 ∙ 𝐸𝐸�⃗ (𝑟𝑟). 
4-2. What is the force acting on a point dipole when it is placed in an external field 

𝐸𝐸�⃗ (𝑟𝑟). 
4-3. Find the electrostatic potential of the planar quadrupole. 
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