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Chapter 7 
Boundary Value Problem  
 
7.1 General description 
The fundamental challenge in electrostatics is to determine the electrostatic 
potential for any arbitrary charge distribution across different material systems 
with varying geometries. Ideally, once the charge distribution 𝜌𝜌(𝑟𝑟′) of an object is 
known, the potential 𝜑𝜑(𝑟𝑟) can be determined using the integral  

𝜑𝜑(𝑟𝑟) =
1

4𝜋𝜋𝜀𝜀0
�

𝜌𝜌(𝑟𝑟′)
|𝑟𝑟 − 𝑟𝑟′|

𝑑𝑑𝑉𝑉′
𝑉𝑉′

. (3.13) 

However, if the charge distribution is unknown or if there are interactions among 
objects causing charge redistribution through induced charges, Equation 3.13 is 
not applicable. In such cases, alternative methods are required. Fortunately, 
Gauss's law provides that the electrostatic potential 𝜑𝜑(𝑟𝑟) must satisfy Poisson’s 
equation (Equation 3.15), 

∇2𝜑𝜑(𝑟𝑟) = −
𝜌𝜌𝑓𝑓(𝑟𝑟)
𝜀𝜀𝜀𝜀0

. (3.15) 

At boundaries between two different materials, the potential must satisfy the 
following boundary conditions (BCs) (Equation 3.25), 

�𝜀𝜀2
𝜕𝜕𝜑𝜑2
𝜕𝜕𝑛𝑛2

+ 𝜀𝜀1
𝜕𝜕𝜑𝜑1
𝜕𝜕𝑛𝑛1

=
𝜎𝜎𝑓𝑓
𝜀𝜀0

𝜑𝜑2(𝑟𝑟𝑠𝑠) = 𝜑𝜑1(𝑟𝑟𝑠𝑠)
. (3.25) 

If 𝜌𝜌𝑓𝑓 = 0 in the space, the Poisson’s equation is reduced to Laplace’s equation 

∇2𝜑𝜑(𝑟𝑟) = 0. (3.16) 

To determine the potential, we can solve the Laplace’s equation, whose solutions 
are defined by specific boundary conditions and initial values. Given that we are 
dealing with a time-independent partial differential equation (PDE), BCs are 
especially crucial for finding a unique solution.  

There are five types of boundary conditions commonly used in solving Laplace's 
equation: 

1) Dirichlet BC: The potential 𝜑𝜑(𝑟𝑟) is specified on the boundary, so 
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𝜑𝜑(𝑟𝑟)|𝑟𝑟1 = 𝑓𝑓(𝑟𝑟). (7.1) 
2) Neumann BC: The derivative of the potential normal to the boundary is 

specified, expressed as 
𝜕𝜕𝜑𝜑
𝜕𝜕𝑛𝑛�𝑟𝑟1

= 𝑓𝑓(𝑟𝑟). (7.2) 

3) Robin BC: A linear combination of the potential and its normal derivative 
is specified, defined by 

�𝐶𝐶0𝜑𝜑(𝑟𝑟) + 𝐶𝐶1
𝜕𝜕𝜑𝜑
𝜕𝜕𝑛𝑛��𝑟𝑟1

= 𝑓𝑓(𝑟𝑟). (7.3) 

4) Mixed BCs: Both the potential and a combination of the potential and its 
normal derivative are specified on different parts of the boundary 

𝜑𝜑(𝑟𝑟)|𝑟𝑟1 = 𝑓𝑓(𝑟𝑟) and �𝐶𝐶0𝜑𝜑(𝑟𝑟) + 𝐶𝐶1
𝜕𝜕𝜑𝜑
𝜕𝜕𝑛𝑛��𝑟𝑟1

= 𝑔𝑔(𝑟𝑟). (7.4) 

5) Cauchy BCs: Both the potential and its normal derivative are specified 
simultaneously on the same boundary, given by 

𝜑𝜑(𝑟𝑟)|𝑟𝑟1 = 𝑓𝑓(𝑟𝑟) and 
𝜕𝜕𝜑𝜑
𝜕𝜕𝑛𝑛�𝑟𝑟1

= 𝑔𝑔(𝑟𝑟). (7.5) 

Here are examples of electrostatic systems that satisfy each of the five types of 
boundary conditions (BCs): 

1) Dirichlet BC: A grounded, conducting sphere in an external electric field. 
Suppose a conducting sphere is placed in a uniform electric field. The 
surface of the conductor is grounded, meaning the potential 𝜑𝜑(𝑟𝑟) is zero 
on the sphere’s surface. This condition can be represented as 𝜑𝜑(𝑟𝑟)|𝑟𝑟1 = 0, 
where 𝑟𝑟1 is any point on the sphere’s surface. Here, the Dirichlet BC fixes 
the potential to a known function (in this case, zero) on the conductor’s 
surface. 

2) Neumann BC: An isolated, charged conducting plane. Consider a large 
conducting plane with a uniform surface charge density. Since this surface 
charge density directly relates to the electric field perpendicular to the 
plane, we can express this as 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝑟𝑟1

= 𝜎𝜎
𝜀𝜀0

 where 𝜎𝜎  is the surface charge 

density and 𝑟𝑟1 is any point on the plane. The Neumann BC specifies the 
normal derivative of the potential, which is equivalent to the electric field 
near the surface of the conductor. 

3) Robin BC: An imperfectly conducting (dielectric) sphere in a uniform 
external electric field. When a dielectric sphere is placed in an electric 
field, the potential on its surface can be expressed as a weighted 
combination of the potential and its normal derivative due to partial 
reflection of the field at the boundary. This is often modeled as 𝐶𝐶0𝜑𝜑(𝑟𝑟) +
𝐶𝐶1

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑓𝑓(𝑟𝑟) at 𝑟𝑟1, where the constants 𝐶𝐶0 and 𝐶𝐶1 depend on the dielectric 
properties of the sphere. The Robin boundary condition reflects a semi-
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conducting or dielectric behavior, where both the potential and the flux 
influence the behavior on the surface. 

4) Mixed BCs: A grounded conducting plane with a nearby charged dielectric 
slab. Imagine a grounded conducting plane with a dielectric slab placed 
near it. On one part of the boundary, the conductor imposes a fixed 
potential (Dirichlet condition), while on another boundary near the 
dielectric, the potential obeys a Robin condition due to the dielectric's 
partial influence on the field. This could be expressed as 𝜑𝜑(𝑟𝑟)|𝑟𝑟1 = 0 on 
the conductor’s surface (Dirichlet) and 𝐶𝐶0𝜑𝜑(𝑟𝑟) + 𝐶𝐶1

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑔𝑔(𝑟𝑟)  at the 
dielectric interface (Robin). 

5) Cauchy BCs: A system involving both specified surface potential and 
surface electric field, such as a grounded conductor with a known electric 
field just outside the surface. In this scenario, both the potential 𝜑𝜑 and its 
normal derivative 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 (related to the electric field) are specified at the 

boundary. An example could be a region around a conducting surface 
where we know both the surface potential (say, grounded at 𝜑𝜑 = 0) and 
the electric field, perhaps due to nearby charges or imposed fields. This is 
relevant when modeling regions with highly controlled potentials and 
fields, such as those in certain electrostatic applications or specific 
laboratory setups. 

In most practical cases, Dirichlet and Neumann boundary conditions are the 
primary types encountered. These boundary conditions are essential in 
constraining the solution space, making it possible to solve for the potential 
accurately within the system. 

From mathematical physics, under each of the five types of boundary conditions, 
the following key properties of solutions can be proven: 

1) Uniqueness of solutions 

Under any of these boundary conditions, the electrostatic potential solution is 
unique. This means that if a solution satisfies the boundary conditions and the 
governing equations (such as Laplace’s or Poisson’s equation), then it is the only 
possible solution for the given physical setup. Uniqueness ensures that the solution 
corresponds reliably to the physical configuration and is fundamental in fields like 
electrostatics, where potential ambiguity can lead to non-physical results. 

2) Completeness of solutions 

Completeness implies that the set of solutions obtained under the boundary 
conditions spans the entire solution space. In practical terms, this means any 
potential distribution satisfying the boundary conditions can be represented by a 
combination of solutions (such as eigenfunctions) derived under these conditions. 
Completeness ensures that the solutions are sufficiently general to describe all 
physically possible configurations for a given problem. 
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3) Orthogonality of eigenstates 

For boundary-value problems, solutions (often termed “eigenstates” or 
“eigenfunctions”) under the specified conditions exhibit orthogonality. This 
orthogonality property is essential when decomposing complex potential 
distributions into simpler components. In electrostatics, orthogonal eigenfunctions 
help simplify solutions in complex geometries, making it possible to represent the 
potential as a series expansion of simpler functions that individually satisfy the 
boundary conditions. 

These properties of uniqueness, completeness, and orthogonality underpin the 
mathematical foundation of electrostatic solutions, allowing for systematic and 
predictable approaches to finding solutions that accurately reflect real-world 
physical systems. 

 

7.2 Boundary Value Problems in Rectangular Geometry 
A common method for solving PDE is the separation of variables. For Laplace’s 
equation with rectangular BCs, we can work in Cartesian coordinates to express 
Equation 3.16 as, 

𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑦𝑦2

+
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑧𝑧2

= 0. (7.6) 

Assuming a solution of the form 𝜑𝜑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑋𝑋(𝑥𝑥)𝑌𝑌(𝑦𝑦)𝑍𝑍(𝑧𝑧), Equation 7.6 can 
be rewritten as, 

1
𝑋𝑋
𝜕𝜕2𝑋𝑋
𝜕𝜕𝑥𝑥2

+
1
𝑌𝑌
𝜕𝜕2𝑌𝑌
𝜕𝜕𝑦𝑦2

+
1
𝑍𝑍
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑧𝑧2

= 0. (7.7) 

Since each term in Equation 7.7 depends on a single variable independently, we 
can separate the equation as, 

1
𝑋𝑋
𝜕𝜕2𝑋𝑋
𝜕𝜕𝑥𝑥2

= 𝛼𝛼2,
1
𝑌𝑌
𝜕𝜕2𝑌𝑌
𝜕𝜕𝑦𝑦2

= 𝛽𝛽2,
1
𝑍𝑍
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑧𝑧2

= 𝛾𝛾2, (7.8) 

with the condition that 
𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 = 0. (7.9) 

Here 𝛼𝛼2 , 𝛽𝛽2 , and 𝛾𝛾2  can take positive or negative values, which means that 
𝛼𝛼,𝛽𝛽, and 𝛾𝛾 could be complex numbers. This approach enables us to reduce the 
original PDE into a set of ordinary differential equations (ODEs), each depending 
on only one of the spatial variables, which can be solved separately under the 
specified boundary conditions. 
The general solutions for the functions 𝑋𝑋(𝑥𝑥),𝑌𝑌(𝑦𝑦), and 𝑍𝑍(𝑧𝑧) can be written as, 

𝑋𝑋𝛼𝛼(𝑥𝑥) = �
𝐴𝐴0 + 𝐵𝐵0𝑥𝑥, 𝛼𝛼 = 0

𝐴𝐴𝛼𝛼𝑒𝑒𝛼𝛼𝛼𝛼 + 𝐵𝐵𝛼𝛼𝑒𝑒−𝛼𝛼𝛼𝛼, 𝛼𝛼 ≠ 0 , (7.10) 

𝑌𝑌𝛽𝛽(𝑦𝑦) = �
𝐶𝐶0 + 𝐷𝐷0𝑦𝑦, 𝛽𝛽 = 0

𝐶𝐶𝛽𝛽𝑒𝑒𝛽𝛽𝛽𝛽 + 𝐷𝐷𝛽𝛽𝑒𝑒−𝛽𝛽𝛽𝛽, 𝛽𝛽 ≠ 0 , (7.11) 
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𝑍𝑍𝛾𝛾(𝑧𝑧) = �
𝐸𝐸0 + 𝐹𝐹0𝑧𝑧, 𝛾𝛾 = 0

𝐸𝐸𝛾𝛾𝑒𝑒𝛾𝛾𝛾𝛾 + 𝐹𝐹𝛾𝛾𝑒𝑒−𝛾𝛾𝛾𝛾, 𝛾𝛾 ≠ 0 , (7.11) 

These solutions correspond to different cases for 𝛼𝛼 , 𝛽𝛽 , and 𝛾𝛾 , depending on 
whether the separation constants are zero or non-zero. When the separation 
constant is zero, the solution is linear, while for non-zero values, the solution can 
be expressed as exponential functions. 
The final solution for potential 𝜑𝜑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is then given as a linear combination of 
all possible products of these solutions 𝑋𝑋(𝑥𝑥),𝑌𝑌(𝑦𝑦), and 𝑍𝑍(𝑧𝑧), 

𝜑𝜑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = ���𝑋𝑋𝛼𝛼(𝑥𝑥)𝑌𝑌𝛽𝛽(𝑦𝑦)
𝛾𝛾𝛽𝛽𝛼𝛼

𝑍𝑍𝛾𝛾(𝑧𝑧)𝛿𝛿(𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2), (7.12) 

where 𝛿𝛿(𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2) serves as a selection function, 

𝛿𝛿(𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2) = �1, if 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 = 0 
0, if 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 ≠ 0

.   

This ensures that only combinations of 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 satisfying 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 = 0; 
contribute to the final solution. The coefficients 𝐴𝐴𝛼𝛼 , 𝐵𝐵𝛼𝛼 , 𝐶𝐶𝛽𝛽 , 𝐷𝐷𝛽𝛽 , 𝐸𝐸𝛾𝛾 , and 𝐹𝐹𝛾𝛾  are 
determined by applying the specific BCs for the problem, which provide the 
necessary constraints to fully define the potential in the region of interest. 
 

Example 7.1 Find the electrostatic potential 𝜑𝜑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) inside a rectangular potential box as 
shown in Fig. 7.1, where the potential is zero on five surfaces and is given by 𝜑𝜑 =
𝑉𝑉(𝑥𝑥,𝑦𝑦) at the top surface. 

 
Fig. 7.1 A rectangular potential box. 

Discussion: The geometry of the system satisfies the conditions needed for 
applying the separation of variables in Cartesian coordinate, as outlined in 
Equation 7.7. This allows us to express the general solution using Equation 7.12. 
To determine the specific solution, we must mathematically define the BCs to find 
all the coefficients 𝐴𝐴𝛼𝛼, 𝐵𝐵𝛼𝛼, 𝐶𝐶𝛽𝛽, 𝐷𝐷𝛽𝛽 , 𝐸𝐸𝛾𝛾, and 𝐹𝐹𝛾𝛾. 
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Solution: The BCs for this problem can be specified as, 

�
𝜑𝜑(0,𝑦𝑦, 𝑧𝑧) = 0 and 𝜑𝜑(𝑎𝑎,𝑦𝑦, 𝑧𝑧) = 0 
𝜑𝜑(𝑥𝑥, 0, 𝑧𝑧) = 0  and  𝜑𝜑(𝑥𝑥, 𝑏𝑏, 𝑧𝑧) = 0

𝜑𝜑(𝑥𝑥,𝑦𝑦, 0) = 0  and  𝜑𝜑(𝑥𝑥,𝑦𝑦, 𝑐𝑐) = 𝑉𝑉(𝑥𝑥,𝑦𝑦)
 

Based on these BCs and using the general form of the solution given by  Equations 
7.10-7.11, we can establish the conditions, 

�𝑋𝑋(0) = 0
𝑋𝑋(𝑎𝑎) = 0 , �𝑌𝑌(0) = 0

𝑌𝑌(𝑏𝑏) = 0 , 𝑍𝑍(0) = 0  

We must ensure that 𝛼𝛼 ≠ 0, 𝛽𝛽 ≠ 0, and 𝛾𝛾 ≠ 0; otherwise, the solution would 
reduce to the trivial case 𝜑𝜑(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = constant.  
 
Step 1: Solving for 𝑋𝑋(𝑥𝑥) 
For 𝑋𝑋(𝑥𝑥), using Equation 7.10, we obtain 

�
𝐴𝐴𝛼𝛼 + 𝐵𝐵𝛼𝛼 = 0, for 𝑥𝑥 = 0

𝐴𝐴𝛼𝛼𝑒𝑒𝛼𝛼𝛼𝛼 + 𝐵𝐵𝛼𝛼𝑒𝑒−𝛼𝛼𝛼𝛼 = 0, for 𝑥𝑥 = 𝑎𝑎  

From the first equation, we get 
𝐴𝐴𝛼𝛼 = −𝐵𝐵𝛼𝛼  

Substituting this into the second equation give, 
𝐴𝐴𝛼𝛼(𝑒𝑒𝛼𝛼𝛼𝛼 − 𝑒𝑒−𝛼𝛼𝛼𝛼) = 0  

Since 𝐴𝐴𝛼𝛼  cannot be zero (otherwise, 𝑋𝑋(𝑥𝑥) = 0, leading to  𝜑𝜑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 ), we 
require, 

𝑒𝑒𝛼𝛼𝛼𝛼 − 𝑒𝑒−𝛼𝛼𝛼𝛼 = 0  
This implies that 𝛼𝛼 must be purely imaginary, so we write, 

𝛼𝛼 = 𝑖𝑖𝛼𝛼′  
Thus, we have, 

sin(𝛼𝛼′𝑎𝑎) = 0  
Hence, the allowed values of 𝛼𝛼′ are,  

𝛼𝛼′ =
𝑛𝑛𝜋𝜋
𝑎𝑎

, 𝑛𝑛 = 1,2,3,⋯  

The solution for 𝑋𝑋(𝑥𝑥) can then be written as, 

𝑋𝑋𝜕𝜕(𝑥𝑥) = 𝐴𝐴𝜕𝜕 sin �
𝑛𝑛𝜋𝜋
𝑎𝑎
𝑥𝑥�  

 
Step 2: Solving for 𝑌𝑌(𝑦𝑦) 
Following a similar approach for 𝑌𝑌(𝑦𝑦), we find  

𝑌𝑌𝑚𝑚(𝑦𝑦) = 𝐶𝐶𝑚𝑚 sin �
𝑚𝑚𝜋𝜋
𝑏𝑏
𝑦𝑦� , 𝑚𝑚 = 1,2,3,⋯  

Thus, we can write 
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𝛽𝛽 = 𝑖𝑖𝛽𝛽′ =
𝑚𝑚𝜋𝜋
𝑏𝑏  

 
Step 3: Solving for 𝑍𝑍(𝑧𝑧) 
Using Equation 7.9, we get 

𝛾𝛾2 − �
𝑛𝑛𝜋𝜋
𝑎𝑎
�
2
− �

𝑚𝑚𝜋𝜋
𝑏𝑏
�
2

= 0  

Therefore, 

𝛾𝛾𝜕𝜕𝑚𝑚 = ��
𝑛𝑛𝜋𝜋
𝑎𝑎
�
2

+ �
𝑚𝑚𝜋𝜋
𝑏𝑏
�
2

 

Since 𝑍𝑍(0) = 0, we obtain 
𝐸𝐸𝛾𝛾 = −𝐹𝐹𝛾𝛾  

Thus, the general solution for 𝑍𝑍(𝑧𝑧) becomes 
𝑍𝑍(𝑧𝑧) = 𝐸𝐸𝛾𝛾 sinh(𝛾𝛾𝑧𝑧)  

 
Step 4: Combining the solutions 
Combining the solutions for 𝑋𝑋(𝑥𝑥),𝑌𝑌(𝑦𝑦), and 𝑍𝑍(𝑧𝑧), the potential can be expressed 
as 

𝜑𝜑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = � � 𝐴𝐴𝜕𝜕𝑚𝑚

∞

𝑚𝑚=1

∞

𝜕𝜕=1

sin �
𝑛𝑛𝜋𝜋
𝑎𝑎
𝑥𝑥� sin �

𝑚𝑚𝜋𝜋
𝑏𝑏
𝑦𝑦� sinh(𝛾𝛾𝜕𝜕𝑚𝑚𝑧𝑧)  

Here, the coefficient 𝐴𝐴𝜕𝜕𝑚𝑚 encompass all factors, such that 𝐴𝐴𝜕𝜕𝑚𝑚 = 𝐴𝐴𝜕𝜕𝐶𝐶𝑚𝑚𝐸𝐸𝛾𝛾.  
 
Step 5: Applying the final BC 
To determine the coefficient 𝐴𝐴𝜕𝜕𝑚𝑚, we apply the BC 𝜑𝜑(𝑥𝑥, 𝑦𝑦, 𝑐𝑐) = 𝑉𝑉(𝑥𝑥,𝑦𝑦), yielding 

𝑉𝑉(𝑥𝑥,𝑦𝑦) = � � 𝐴𝐴𝜕𝜕𝑚𝑚

∞

𝑚𝑚=1

∞

𝜕𝜕=1

sin �
𝑛𝑛𝜋𝜋
𝑎𝑎
𝑥𝑥� sin �

𝑚𝑚𝜋𝜋
𝑏𝑏
𝑦𝑦� sinh(𝛾𝛾𝜕𝜕𝑚𝑚𝑐𝑐)  

 
Step 6: Using orthogonality to solve for 𝐴𝐴𝜕𝜕𝑚𝑚 
The orthogonality of of sine functions allows us to isolate 𝐴𝐴𝜕𝜕𝑚𝑚, 

� sin �
𝑛𝑛𝜋𝜋
𝑎𝑎
𝑥𝑥�

𝛼𝛼

0
sin�

𝑛𝑛′𝜋𝜋
𝑎𝑎
𝑥𝑥�𝑑𝑑𝑥𝑥 =

𝑎𝑎
2
𝛿𝛿𝜕𝜕𝜕𝜕′  

� sin �
𝑚𝑚𝜋𝜋
𝑏𝑏
𝑦𝑦�

𝑏𝑏

0
sin�

𝑚𝑚′𝜋𝜋
𝑏𝑏

𝑦𝑦�𝑑𝑑𝑦𝑦 =
𝑏𝑏
2
𝛿𝛿𝑚𝑚𝑚𝑚′  

We have 
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� 𝑑𝑑𝑥𝑥
𝛼𝛼

0
� 𝑑𝑑𝑦𝑦
𝑏𝑏

0
𝑉𝑉(𝑥𝑥,𝑦𝑦) sin�

𝑛𝑛′𝜋𝜋
𝑎𝑎
𝑥𝑥� sin�

𝑚𝑚′𝜋𝜋
𝑏𝑏

𝑦𝑦� =

� 𝑑𝑑𝑥𝑥
𝛼𝛼

0
� 𝑑𝑑𝑦𝑦
𝑏𝑏

0
sin�

𝑛𝑛′𝜋𝜋
𝑎𝑎
𝑥𝑥� sin�

𝑚𝑚′𝜋𝜋
𝑏𝑏

𝑦𝑦�� � 𝐴𝐴𝜕𝜕𝑚𝑚

∞

𝑚𝑚=1

∞

𝜕𝜕=1

sin �
𝑛𝑛𝜋𝜋
𝑎𝑎
𝑥𝑥� sin �

𝑚𝑚𝜋𝜋
𝑏𝑏
𝑦𝑦� sinh(𝛾𝛾𝜕𝜕𝑚𝑚𝑐𝑐) =

𝐴𝐴𝜕𝜕′𝑚𝑚′ sinh(𝛾𝛾𝜕𝜕′𝑚𝑚′𝑐𝑐)
𝑎𝑎𝑏𝑏
4

 

Thus, the coefficient 𝐴𝐴𝜕𝜕𝑚𝑚 can be found as 

𝐴𝐴𝜕𝜕𝑚𝑚 =
4

𝑎𝑎𝑏𝑏 sinh(𝛾𝛾𝜕𝜕𝑚𝑚𝑐𝑐)� 𝑑𝑑𝑥𝑥
𝛼𝛼

0
� 𝑑𝑑𝑦𝑦
𝑏𝑏

0
𝑉𝑉(𝑥𝑥,𝑦𝑦) sin �

𝑛𝑛𝜋𝜋
𝑎𝑎
𝑥𝑥� sin �

𝑚𝑚𝜋𝜋
𝑏𝑏
𝑦𝑦� 

This solution provides a complete expression for the electrostatic potential inside 
the box, satisfying the specified boundary conditions. 
 
7.3 Boundary Value Problems in Geometry of Azimuthal 
Symmetry 
When the potential of an electrostatic system exhibits azimuthal symmetry, 
spherical coordinates are a natural choice for simplifying the problem. In spherical 
coordinates as shown in Figure 7.2, the potential is expressed as 𝜑𝜑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
𝜑𝜑(𝑟𝑟,𝜃𝜃,𝜙𝜙) , where 𝑟𝑟  is the radial distance, 𝜃𝜃  is the polar angle, and 𝜙𝜙  is the 
azimuthal angle. For a system with azimuthal symmetry, the potential is 
independent of 𝜙𝜙, so𝜑𝜑(𝑟𝑟,𝜃𝜃,𝜙𝜙) = 𝜑𝜑(𝑟𝑟,𝜃𝜃). 

 
Fig. 7.2 Spherical coordinates. 

In spherical coordinates with the azimuthal symmetry, the Laplace’s equation can 
be written as, 

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2

𝜕𝜕𝜑𝜑
𝜕𝜕𝑟𝑟
� +

1
𝑟𝑟2 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃

�sin𝜃𝜃
𝜕𝜕𝜑𝜑
𝜕𝜕𝜃𝜃
� = 0. (7.13) 
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To solve this equation, we use the method of separation of variables by letting 
𝜑𝜑(𝑟𝑟,𝜃𝜃) = 𝑅𝑅(𝑟𝑟)Θ(𝜃𝜃), leading to the following separate ODEs 

�

𝑑𝑑
𝑑𝑑𝑟𝑟
�𝑟𝑟2

𝑑𝑑𝑅𝑅
𝑑𝑑𝑟𝑟
� − 𝜅𝜅𝑅𝑅 = 0

𝑑𝑑
𝑑𝑑𝑥𝑥 �

(1 − 𝑥𝑥2)
𝑑𝑑Θ
𝑑𝑑𝑥𝑥�

+ 𝜅𝜅Θ = 0
, (7.14) 

where 𝑥𝑥 = cos𝜃𝜃 , and 𝜅𝜅 is a separation constant. The general solutions for 
Equation 7.14 can be written as, 

𝑅𝑅𝑙𝑙(𝑟𝑟) = 𝐴𝐴𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐵𝐵𝑙𝑙𝑟𝑟−(𝑙𝑙+1), (7.15) 
Θ𝑙𝑙(𝜃𝜃) = 𝐶𝐶𝑙𝑙𝑃𝑃𝑙𝑙(cos𝜃𝜃) + 𝐷𝐷𝑙𝑙𝑄𝑄𝑙𝑙(cos𝜃𝜃), (7.16) 

where 𝜅𝜅 = 𝑙𝑙(𝑙𝑙 + 1), 𝑃𝑃𝑙𝑙(cos𝜃𝜃) and 𝑄𝑄𝑙𝑙(cos𝜃𝜃) are Legendre functions of the fist 
and second kinds. The general solution for 𝜑𝜑(𝑟𝑟,𝜃𝜃) can be expressed as, 

𝜑𝜑(𝑟𝑟,𝜃𝜃) = ��𝐴𝐴𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐵𝐵𝑙𝑙𝑟𝑟−(𝑙𝑙+1)�
∞

𝑙𝑙=0

[𝐶𝐶𝑙𝑙𝑃𝑃𝑙𝑙(cos𝜃𝜃) + 𝐷𝐷𝑙𝑙𝑄𝑄𝑙𝑙(cos𝜃𝜃)]. (7.17) 

Here, 𝐴𝐴𝑙𝑙, 𝐵𝐵𝑙𝑙, 𝐶𝐶𝑙𝑙, 𝐷𝐷𝑙𝑙, are coefficients that must be determined by applying the BCs 
specific to the physical problem at hand. 
Section 4.2.2 covers some fundamental properties of the Legendre polynomials 
𝑃𝑃𝑙𝑙(𝑥𝑥) . The Legendre functions of the second kind,  𝑄𝑄𝑙𝑙(𝑥𝑥) , are solutions to 
Legendre’s differential equation, like the Legendre polynomials 𝑃𝑃𝑙𝑙(𝑥𝑥). However, 
as shown below, 𝑄𝑄𝑙𝑙(𝑥𝑥) exhibit singularities at 𝑥𝑥 = ±1, making them unsuitable 
for representing the electrostatic potential in most physical situations where the 
potential must remain finite on the spherical boundary. Consequently, 𝑄𝑄𝑙𝑙(𝑥𝑥) is 
typically not included in the general solution for the electrostatic potential. 

 
Legendre Function of the Second Kind 

The Legendre functions of the second kind 𝑄𝑄𝑙𝑙(𝑥𝑥)  can be represented as the 
following when 𝑙𝑙 is an integer, 

𝑄𝑄𝑙𝑙(𝑥𝑥) =
1
2
𝑃𝑃𝑙𝑙(𝑥𝑥)ln �

1 + 𝑥𝑥
1 − 𝑥𝑥

� −�
1
𝑘𝑘
𝑃𝑃𝑙𝑙−𝑘𝑘(𝑥𝑥)𝑃𝑃𝑘𝑘−1(𝑥𝑥)

𝑙𝑙

𝑘𝑘=1

.  

Typically, 𝑄𝑄𝑙𝑙(𝑥𝑥) exhibits singularities at 𝑥𝑥 = ±1. For the firs 5 𝑄𝑄𝑙𝑙(𝑥𝑥), they are 

𝑄𝑄0(𝑥𝑥) =
1
2

ln �
1 + 𝑥𝑥
1− 𝑥𝑥

�  

𝑄𝑄1(𝑥𝑥) =
𝑥𝑥
2

ln �
1 + 𝑥𝑥
1 − 𝑥𝑥

� − 1  

 

𝑄𝑄2(𝑥𝑥) =
3𝑥𝑥2 − 1

4
ln �

1 + 𝑥𝑥
1− 𝑥𝑥

� −
3𝑥𝑥
2
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𝑄𝑄3(𝑥𝑥) =
5𝑥𝑥3 − 3𝑥𝑥

6
ln �

1 + 𝑥𝑥
1− 𝑥𝑥

� −
5𝑥𝑥2

2
+

2
3

 

𝑄𝑄4(𝑥𝑥) =
35𝑥𝑥4 − 30𝑥𝑥2 + 3

24
ln �

1 + 𝑥𝑥
1 − 𝑥𝑥

� −
35𝑥𝑥3

12
+

25𝑥𝑥
8

 

 
The function 𝑄𝑄𝑙𝑙(𝑥𝑥)  diverges at 𝑥𝑥 = ±1, so it is undefined at these points. This 
divergence takes a logarithmic form. In applications where real values are required, 
𝑄𝑄𝑙𝑙(𝑥𝑥) is often used only in the domain 𝑥𝑥 > 1. 

In problems with azimuthal symmetry, the electrostatic potential 𝜑𝜑(𝑟𝑟,𝜃𝜃) usually 
takes the following form, 

𝜑𝜑(𝑟𝑟,𝜃𝜃) = ��𝐴𝐴𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐵𝐵𝑙𝑙𝑟𝑟−(𝑙𝑙+1)�
∞

𝑙𝑙=0

𝑃𝑃𝑙𝑙(cos𝜃𝜃). (7.18) 

The coefficients 𝐴𝐴𝑙𝑙  and 𝐵𝐵𝑙𝑙  can be obtained via the orthogonality property of 
Legendre polynomials under specific BCs, 

� 𝑃𝑃𝑙𝑙(𝑥𝑥)𝑃𝑃𝑙𝑙′(𝑥𝑥)
1

−1
𝑑𝑑𝑥𝑥 =

2
2𝑙𝑙 + 1

𝛿𝛿𝑙𝑙𝑙𝑙′ , (7.19) 

or 

� 𝑃𝑃𝑙𝑙(cos𝜃𝜃)𝑃𝑃𝑙𝑙′(cos𝜃𝜃)
𝜋𝜋

0
sin𝜃𝜃 𝑑𝑑𝜃𝜃 =

2
2𝑙𝑙 + 1

𝛿𝛿𝑙𝑙𝑙𝑙′ . (7.20) 

 

Example 7.2 Find the electrostatic potential and electric  field of a conducting sphere (with a 
radius of a) placed in a uniform electric field, shown in Fig. 7.3. 
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Fig. 7.3 A conducting sphere in a uniform electric field. 

Discussion: This problem involves a conducting sphere placed in a uniform 
electric field, similar to the scenario discussed in Example 5.1. The system 
exhibits azimuthal symmetry, meaning that the potential 𝜑𝜑(𝑟𝑟,𝜃𝜃) is independent of 
the azimuthal angle 𝜙𝜙 . Inside the conducting sphere, the potential remains 
constant, since a conductor in electrostatic equilibrium is an equipotential, and the 
electric field is zero. The external uniform electric field 𝐸𝐸0 induces a redistribution 
of charges on the sphere’s surface, effectively creating an induced dipole. The 
resulting potential outside the sphere behaves like that of a dipole, decaying as 
1/𝑟𝑟2. Far from the sphere (𝑟𝑟 → ∞), the potential does not approach zero, but rather 
converges to 𝜑𝜑(𝑟𝑟 → ∞,𝜃𝜃) = −𝐸𝐸0𝑧𝑧 = −𝐸𝐸0𝑟𝑟 cos𝜃𝜃.  
Solution: Outside the conducting sphere, the potential satisfies Laplace’s equation. 
The boundary conditions for this problem can be stated as, 

𝜑𝜑(𝑟𝑟 → ∞,𝜃𝜃) = −𝐸𝐸0𝑧𝑧 = −𝐸𝐸0𝑟𝑟 cos𝜃𝜃 = − 𝐸𝐸0𝑟𝑟𝑃𝑃1(cos𝜃𝜃)  
𝜑𝜑(𝑎𝑎,𝜃𝜃) = 0  

Here 𝜑𝜑(𝑎𝑎,𝜃𝜃) = 0 establishes the conducting sphere as the reference potential.  
 
Step 1: General solution for the potential 
The general solution for Laplace’s equation is given by Equation 7.18. Applying 
the BC at 𝑟𝑟 → ∞, we have 

𝜑𝜑(𝑟𝑟 → ∞,𝜃𝜃) = �𝐴𝐴𝑙𝑙𝑟𝑟𝑙𝑙
∞

𝑙𝑙=0

𝑃𝑃𝑙𝑙(cos𝜃𝜃)  

Thus, 
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𝐴𝐴0 + 𝐴𝐴1𝑟𝑟𝑃𝑃1(cos𝜃𝜃) + �𝐴𝐴𝑙𝑙𝑟𝑟𝑙𝑙
∞

𝑙𝑙=2

𝑃𝑃𝑙𝑙(cos𝜃𝜃) = −𝐸𝐸0𝑟𝑟𝑃𝑃1(cos𝜃𝜃)  

Due to the orthogonality of 𝑃𝑃1(cos𝜃𝜃), matching the coefficients in front of each 
𝑃𝑃𝑙𝑙(cos𝜃𝜃) on both side of above equation, we find 

𝐴𝐴1 = −𝐸𝐸0,𝐴𝐴0 = 0,𝐴𝐴𝑙𝑙 = 0 for 𝑙𝑙 ≥ 2  
Therefore, the potential can be written as, 

𝜑𝜑(𝑟𝑟,𝜃𝜃) = −𝐸𝐸0𝑟𝑟𝑃𝑃1(cos𝜃𝜃) + �𝐵𝐵𝑙𝑙𝑟𝑟−(𝑙𝑙+1)
∞

𝑙𝑙=0

𝑃𝑃𝑙𝑙(cos𝜃𝜃)  

 
Step 2: Applying the BC at 𝑟𝑟 = 𝑎𝑎 
At the surface of the sphere, 𝜑𝜑(𝑎𝑎,𝜃𝜃) = 0, giving 

−𝐸𝐸0𝑎𝑎𝑃𝑃1(cos𝜃𝜃) + �𝐵𝐵𝑙𝑙𝑎𝑎−(𝑙𝑙+1)
∞

𝑙𝑙=0

𝑃𝑃𝑙𝑙(cos𝜃𝜃) = 0  

Again, using the orthogonality property of Legendre polynomials, we find that 
only 𝐵𝐵1 is non-zero. Therefore, we have  

−𝐸𝐸0𝑎𝑎𝑃𝑃1(cos𝜃𝜃) + 𝐵𝐵1𝑎𝑎−2𝑃𝑃1(cos𝜃𝜃) = 0  
Solving for 𝐵𝐵1, we obtain 

𝐵𝐵1 = 𝐸𝐸0𝑎𝑎3  
 
Step 3: Final expression for the potential 
The final solution for the potential outside the sphere is given by 

𝜑𝜑(𝑟𝑟,𝜃𝜃) = −𝐸𝐸0𝑟𝑟 cos𝜃𝜃 +
𝐸𝐸0𝑎𝑎3

𝑟𝑟2
cos𝜃𝜃  

The second term, 𝐸𝐸0𝛼𝛼
3

𝑟𝑟2
cos𝜃𝜃, represents the induced dipole potential. 

 
Step 4: Induced dipole moment and polarizability 
The induced potential term can be interpreted as a dipole potential, 

𝐸𝐸0𝑎𝑎3

𝑟𝑟2
cos𝜃𝜃 =

𝑝𝑝𝑖𝑖𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
4𝜋𝜋𝜀𝜀0𝑟𝑟2

cos𝜃𝜃  

Thus, the induced dipole moment is 
𝑝𝑝𝑖𝑖𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 4𝜋𝜋𝜀𝜀0𝑎𝑎3𝐸𝐸0  

The polarizability of the conducting sphere is given by, 
𝛼𝛼 = 4𝜋𝜋𝑎𝑎3  

This result matches the value derived in Example 5.1.  
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Step 5: Electric field calculation 
The electric field outside the sphere can be found by taking the negative gradient 
of the potential and has two components, 

�
𝐸𝐸𝑟𝑟(𝑟𝑟,𝜃𝜃) = −𝜕𝜕𝜕𝜕

𝜕𝜕𝑟𝑟
= 𝐸𝐸0 �1 + 2𝛼𝛼3

𝑟𝑟3
� cos𝜃𝜃

𝐸𝐸𝜃𝜃(𝑟𝑟,𝜃𝜃) = −1
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃

= −𝐸𝐸0 �1 − 𝛼𝛼3

𝑟𝑟3
� sin𝜃𝜃

  

 
Step 6: Induced surface charge density 
The surface charge density on the sphere is related to the discontinuity in the 
normal electric field at the surface, 

𝜎𝜎(𝜃𝜃) = −𝜀𝜀0
𝜕𝜕𝜑𝜑(𝑟𝑟,𝜃𝜃)
𝜕𝜕𝑟𝑟

�
𝑟𝑟=𝛼𝛼

= 3𝜀𝜀0𝐸𝐸0 cos𝜃𝜃 

This result indicates that the surface charge density varies with cos𝜃𝜃 , 
concentrating more charge at the poles of the sphere. 

 

Example 7.3 A point dipole 𝑝𝑝0 , oriented along the +z -axis, is placed at the center of a 
homogeneous dielectric sphere of radius a and dielectric constant 𝜀𝜀1. The sphere 
is immersed in an external medium with dielectric constant 𝜀𝜀2, as shown in Fig. 
7.4. The goal is to find the electrostatic potential both inside and outside the 
sphere, as well as the polarization charge density on the sphere’s surface. 

 
Fig. 7.4 A dielectric sphere containing a point dipole, immersed in a medium with 

a different dielectric constant. 

 
Discussion: The presence of a point dipole at the center implies that the potential 
cannot be determined using Laplace’s equation everywhere, since Laplace’s 
equation applies only in regions without free charges. However, apart from the 
origin, there are no free charges inside or outside the dielectric sphere, making 

x

y

z

O
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Laplace’s equation valid in these regions. The solution can be approached using 
the principle of superposition. The total potential inside the sphere, 𝜑𝜑𝑖𝑖𝜕𝜕, can be 
viewed as a combination of the potential generated by the point dipole 𝜑𝜑𝑖𝑖  and the 
potential 𝜑𝜑′𝑖𝑖𝜕𝜕  induced by the polarization of the sphere, including any surface 
polarization charges. Outside the sphere, the potential 𝜑𝜑𝑜𝑜𝑖𝑖𝑜𝑜  results solely from the 
polarization of the sphere in the external dielectric. Thus, both 𝜑𝜑′𝑖𝑖𝜕𝜕  and 𝜑𝜑𝑜𝑜𝑖𝑖𝑜𝑜 
satisfy Laplace's equation, while the potential 𝜑𝜑𝑖𝑖  is described by the dipole field, 
Equation 4.29. 
Solution: The problem exhibits azimuthal symmetry due to the alignment of the 
dipole along the z-axis, allowing us to express the potentials in terms of spherical 
coordinates (𝑟𝑟,𝜃𝜃).  

Step 1: Potential inside the sphere 
The potential inside the sphere is the sum of the potential due to the point dipole 
and the induced potential 𝜑𝜑′𝑖𝑖𝜕𝜕 

𝜑𝜑𝑖𝑖𝜕𝜕 =
 𝑝𝑝0 ∙ 𝑟𝑟

4𝜋𝜋𝜀𝜀1𝑟𝑟3
+  𝜑𝜑′𝑖𝑖𝜕𝜕      for 𝑟𝑟 ≤ 𝑎𝑎  

The dipole potential is given by 

𝜑𝜑𝑖𝑖 =
 𝑝𝑝0 ∙ 𝑟𝑟

4𝜋𝜋𝜀𝜀1𝑟𝑟3
 

Step 2: Boundary conditions 
To solve for the potentials, we use the following BCs: 

(1) At infinity: The potential outside the sphere vanishes as 𝑟𝑟 → ∞, i.e., when 
𝑟𝑟 → ∞, 𝜑𝜑𝑜𝑜𝑖𝑖𝑜𝑜 → 0 

(2) At the center: The induced potential 𝜑𝜑′𝑖𝑖𝜕𝜕 must be finite at 𝑟𝑟 = 0 
(3) Continuity of potential at 𝑟𝑟 = 𝑎𝑎: The potential is continuous across the 

boundary, 𝜑𝜑𝑖𝑖𝜕𝜕(𝑎𝑎,𝜃𝜃) = 𝜑𝜑𝑜𝑜𝑖𝑖𝑜𝑜(𝑎𝑎,𝜃𝜃) 
(4) Continuity of the normal component of displacement field: The normal 

component of the electric displacement field is continuous across the 
boundary:  𝜀𝜀2

𝜕𝜕𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑟𝑟

�
𝑟𝑟=𝛼𝛼

= 𝜀𝜀1
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝑟𝑟

�
𝑟𝑟=𝛼𝛼

 

Step 3: General solutions for 𝜑𝜑′𝑖𝑖𝜕𝜕 and 𝜑𝜑𝑜𝑜𝑖𝑖𝑜𝑜 

Since both 𝜑𝜑′𝑖𝑖𝜕𝜕 and 𝜑𝜑𝑜𝑜𝑖𝑖𝑜𝑜 satisfy the Laplace’s equation, according to Equation 
7.17, their general solutions are, 

⎩
⎪
⎨

⎪
⎧𝜑𝜑′𝑖𝑖𝜕𝜕 = ��𝐴𝐴𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐵𝐵𝑙𝑙𝑟𝑟−(𝑙𝑙+1)�

∞

𝑙𝑙=0

𝑃𝑃𝑙𝑙(cos𝜃𝜃)   for 𝑟𝑟 ≤ 𝑎𝑎

𝜑𝜑𝑜𝑜𝑖𝑖𝑜𝑜 = ��𝐶𝐶𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐷𝐷𝑙𝑙𝑟𝑟−(𝑙𝑙+1)�
∞

𝑙𝑙=0

𝑃𝑃𝑙𝑙(cos𝜃𝜃)   for 𝑟𝑟 > 𝑎𝑎

 

Step 4: Applying boundary conditions 
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Since the potential must vanish at infinity, i.e., implementing the BC#1, we can 
obtain 𝐶𝐶𝑙𝑙 = 0 for all l. 

To ensure that 𝜑𝜑′𝑖𝑖𝜕𝜕 remains finite at the origin, i.e., the BC#2, we have 𝐵𝐵𝑙𝑙 = 0 for 
all l. 

Thus, the potentials reduce to, 

⎩
⎪
⎨

⎪
⎧𝜑𝜑′𝑖𝑖𝜕𝜕 = �𝐴𝐴𝑙𝑙𝑟𝑟𝑙𝑙

∞

𝑙𝑙=0

𝑃𝑃𝑙𝑙(cos𝜃𝜃)             for 𝑟𝑟 ≤ 𝑎𝑎

𝜑𝜑𝑜𝑜𝑖𝑖𝑜𝑜 = �𝐷𝐷𝑙𝑙𝑟𝑟−(𝑙𝑙+1)
∞

𝑙𝑙=0

𝑃𝑃𝑙𝑙(cos𝜃𝜃)   for 𝑟𝑟 > 𝑎𝑎

 

BC#3 and BC#4 give two equations, 

⎩
⎪
⎨

⎪
⎧ 𝑝𝑝0 cos𝜃𝜃

4𝜋𝜋𝜀𝜀1𝑎𝑎2
+ �𝐴𝐴𝑙𝑙𝑎𝑎𝑙𝑙

∞

𝑙𝑙=0

𝑃𝑃𝑙𝑙(cos𝜃𝜃) = �𝐷𝐷𝑙𝑙𝑎𝑎−(𝑙𝑙+1)
∞

𝑙𝑙=0

𝑃𝑃𝑙𝑙(cos𝜃𝜃)             

−
𝑝𝑝0 cos𝜃𝜃

2𝜋𝜋𝑎𝑎3
+ �𝜀𝜀1𝑙𝑙𝐴𝐴𝑙𝑙𝑎𝑎𝑙𝑙−1

∞

𝑙𝑙=1

𝑃𝑃𝑙𝑙(cos𝜃𝜃) = −�𝜀𝜀2(𝑙𝑙 + 1)𝐷𝐷𝑙𝑙𝑎𝑎−(𝑙𝑙+2)
∞

𝑙𝑙=0

𝑃𝑃𝑙𝑙(cos𝜃𝜃)   

 

Step 5: Solving for coefficients 
Comparing coefficients of 𝑃𝑃𝑙𝑙(cos𝜃𝜃) for each 𝒍𝒍, we find, 

𝐴𝐴1 =
𝑝𝑝0

2𝜋𝜋𝑎𝑎3
𝜀𝜀1 − 𝜀𝜀2

𝜀𝜀1(2𝜀𝜀2 + 𝜀𝜀1)  

𝐷𝐷1 =
3𝑝𝑝0

4𝜋𝜋(2𝜀𝜀2 + 𝜀𝜀1)  

𝐴𝐴𝑙𝑙 = 𝐷𝐷𝑙𝑙 = 0   for 𝑙𝑙 ≠ 1  

Step 6: Final solutions for the potentials 
The electrostatic potentials inside and outside the sphere are given by, 

⎩
⎨

⎧𝜑𝜑𝑖𝑖𝜕𝜕 =
𝑝𝑝0 cos𝜃𝜃
4𝜋𝜋𝜀𝜀1𝑟𝑟2

+  
𝜀𝜀1 − 𝜀𝜀2

2𝜋𝜋(2𝜀𝜀2 + 𝜀𝜀1)
𝑝𝑝0 cos𝜃𝜃
𝑟𝑟2

            for 𝑟𝑟 ≤ 𝑎𝑎

𝜑𝜑𝑜𝑜𝑖𝑖𝑜𝑜 =
3𝑝𝑝0 cos𝜃𝜃

4𝜋𝜋(2𝜀𝜀2 + 𝜀𝜀1)𝑟𝑟2
                                           for 𝑟𝑟 > 𝑎𝑎

 

Step 7: Polarization surface charge density 

The surface polarization charge density at 𝑟𝑟 = 𝑎𝑎 can be calculated using the 
discontinuity in the normal component of the electric displacement field 

𝜎𝜎𝑃𝑃 = −𝑛𝑛� ∙ �𝑃𝑃�⃗2 − 𝑃𝑃�⃗1� = (𝜀𝜀2 − 𝜀𝜀0)
𝜕𝜕𝜑𝜑𝑜𝑜𝑖𝑖𝑜𝑜
𝜕𝜕𝑟𝑟 �

𝑟𝑟=𝛼𝛼
− (𝜀𝜀1 − 𝜀𝜀0)

𝜕𝜕𝜑𝜑𝑖𝑖𝜕𝜕
𝜕𝜕𝑟𝑟 �

𝑟𝑟=𝛼𝛼
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=
3𝜀𝜀0(𝜀𝜀1 − 𝜀𝜀2)𝑝𝑝0 cos𝜃𝜃

4𝜋𝜋𝜀𝜀1(2𝜀𝜀2 + 𝜀𝜀1)𝑎𝑎3
 

7.4 Boundary Value Problems with Spherical Symmetry 
When the potential 𝜑𝜑(𝑟𝑟,𝜃𝜃,𝜙𝜙)  in an electrostatic system exhibits spherical 
symmetry, solving the problem in spherical coordinates becomes the natural 
choice. In this coordinate system, Laplace’s equation is expressed as, 

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2

𝜕𝜕𝜑𝜑
𝜕𝜕𝑟𝑟
� +

1
𝑟𝑟2 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃

�sin𝜃𝜃
𝜕𝜕𝜑𝜑
𝜕𝜕𝜃𝜃
� +

1
𝑟𝑟2 sin2 𝜃𝜃

𝜕𝜕2𝜑𝜑
𝜕𝜕𝜙𝜙2 = 0. (7.21) 

To solve Laplace’s equation, we use the method of separation of variables, where 
the potential is assumed to take the form 𝜑𝜑(𝑟𝑟,𝜃𝜃,𝜙𝜙) = 𝑅𝑅(𝑟𝑟)Θ(𝜃𝜃)Φ(𝜙𝜙) . 
Substituting this into Laplace’s equation and separating variables gives us three 
ODEs 

⎩
⎪⎪
⎨

⎪⎪
⎧

1
𝑟𝑟2

𝑑𝑑
𝑑𝑑𝑟𝑟
�𝑟𝑟2

𝑑𝑑𝑅𝑅
𝑑𝑑𝑟𝑟
� −

𝜆𝜆
𝑟𝑟2
𝑅𝑅 = 0

1
sin𝜃𝜃

𝑑𝑑
𝑑𝑑𝜃𝜃

�sin𝜃𝜃
𝑑𝑑Θ
𝑑𝑑𝜃𝜃
� + �𝜆𝜆 −

𝑚𝑚2

sin2 𝜃𝜃�
Θ = 0

𝑑𝑑2Φ
𝑑𝑑𝜙𝜙2 + 𝑚𝑚2Φ = 0

, (7.21) 

where 𝜆𝜆  and 𝑚𝑚  are separation constants.  Let 𝜆𝜆 = 𝑙𝑙(𝑙𝑙 + 1) , where 𝑙𝑙  is a non-
negative integer, leading to the following general solutions. 

𝑅𝑅𝑙𝑙(𝑟𝑟) = 𝐴𝐴𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐵𝐵𝑙𝑙𝑟𝑟−(𝑙𝑙+1), (7.22) 
Φ𝑚𝑚(𝜙𝜙) = 𝑒𝑒𝑖𝑖𝑚𝑚𝑖𝑖 or 𝑒𝑒−𝑖𝑖𝑚𝑚𝑖𝑖 (7.23) 

Θ𝑙𝑙𝑚𝑚(𝜃𝜃) = �
2𝑙𝑙 + 1

2
(𝑙𝑙 − 𝑚𝑚)!
(𝑙𝑙 + 𝑚𝑚)!

𝑃𝑃𝑙𝑙𝑚𝑚(cos𝜃𝜃), −𝑙𝑙 ≤ 𝑚𝑚 ≤ 𝑙𝑙 (7.24) 

where 𝑃𝑃𝑙𝑙𝑚𝑚(𝑥𝑥) is the associated Legendre function, defined by 

𝑃𝑃𝑙𝑙𝑚𝑚(𝑥𝑥) = (−1)𝑚𝑚(1− 𝑥𝑥2)
𝑚𝑚
2
𝑑𝑑𝑚𝑚

𝑑𝑑𝑥𝑥𝑚𝑚
𝑃𝑃𝑙𝑙(𝑥𝑥). (7.25) 

The 𝑃𝑃𝑙𝑙𝑚𝑚(𝑥𝑥) satisfies the following orthogonality conditions, 

� 𝑃𝑃𝑙𝑙𝑚𝑚(𝑥𝑥)
1

−1
𝑃𝑃𝑙𝑙′
𝑚𝑚(𝑥𝑥)𝑑𝑑𝑥𝑥 =

2
2𝑙𝑙 + 1

(𝑙𝑙 + 𝑚𝑚)!
(𝑙𝑙 − 𝑚𝑚)!

𝛿𝛿𝑙𝑙𝑙𝑙′ , (7.26) 

or 

� 𝑃𝑃𝑙𝑙𝑚𝑚(cos𝜃𝜃)
𝜋𝜋

0
𝑃𝑃𝑙𝑙′
𝑚𝑚(cos𝜃𝜃) sin𝜃𝜃 𝑑𝑑𝜃𝜃 =

2
2𝑙𝑙 + 1

(𝑙𝑙 + 𝑚𝑚)!
(𝑙𝑙 − 𝑚𝑚)!

𝛿𝛿𝑙𝑙𝑙𝑙′ . (7.26) 

Similarly, the azimuthal solutions Φ𝑚𝑚(𝜙𝜙) satisfy, 

� 𝑒𝑒𝑖𝑖𝑚𝑚𝑖𝑖𝑒𝑒−𝑖𝑖𝑚𝑚′𝑖𝑖
2𝜋𝜋

0
𝑑𝑑𝜙𝜙 = 2𝜋𝜋𝛿𝛿𝑚𝑚𝑚𝑚′ . (7.27) 

Combining the angular and azimuthal solutions, Θ𝑙𝑙𝑚𝑚(𝜃𝜃) and Φ𝑚𝑚(𝜙𝜙), we define 
the spherical harmonics, Y𝑙𝑙𝑚𝑚(𝜃𝜃,𝜙𝜙), as 
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Y𝑙𝑙𝑚𝑚(𝜃𝜃,𝜙𝜙) = �
2𝑙𝑙 + 1

2
(𝑙𝑙 − 𝑚𝑚)!
(𝑙𝑙 + 𝑚𝑚)!

𝑃𝑃𝑙𝑙𝑚𝑚(cos𝜃𝜃)𝑒𝑒𝑖𝑖𝑚𝑚𝑖𝑖. (7.28) 

The spherical harmonics form a complete set of orthogonal functions on the sphere 
and are widely used in solving problems with spherical symmetry. Therefore, the 
general solution for Laplace’s equation in spherical coordinates can be written as 

𝜑𝜑(𝑟𝑟,𝜃𝜃,𝜙𝜙) = � � �𝐴𝐴𝑙𝑙𝑚𝑚𝑟𝑟𝑙𝑙 + 𝐵𝐵𝑙𝑙𝑚𝑚𝑟𝑟−(𝑙𝑙+1)�
𝑙𝑙

𝑚𝑚=−𝑙𝑙

∞

𝑙𝑙=0

Y𝑙𝑙𝑚𝑚(𝜃𝜃,𝜙𝜙). (7.29) 

In typical boundary value problems, the potential is expressed differently for 
regions inside and outside a spherical boundary,  

𝜑𝜑(𝑟𝑟,𝜃𝜃,𝜙𝜙) =

⎩
⎪
⎨

⎪
⎧ � � 𝐴𝐴𝑙𝑙𝑚𝑚𝑟𝑟𝑙𝑙

𝑙𝑙

𝑚𝑚=−𝑙𝑙

∞

𝑙𝑙=0

Y𝑙𝑙𝑚𝑚(𝜃𝜃,𝜙𝜙), inside the sphere

� � 𝐵𝐵𝑙𝑙𝑚𝑚𝑟𝑟−(𝑙𝑙+1)
𝑙𝑙

𝑚𝑚=−𝑙𝑙

∞

𝑙𝑙=0

Y𝑙𝑙𝑚𝑚(𝜃𝜃,𝜙𝜙).  outside the sphere

(7.30) 

 
Example 7.4 Find the electrostatic potential 𝜑𝜑(𝑟𝑟,𝜃𝜃,𝜙𝜙) outside a spherical shell of radius R 

with a given surface charge density 𝜎𝜎(𝜃𝜃,𝜙𝜙).   
Discussion: Given the spherical geometry of the problem, we can use a solution 
expressed in spherical harmonics (Equation 7.29), as they are naturally suited to 
this symmetry. The boundary conditions are as follows: 1) At infinity: as 𝑟𝑟 → ∞, 
𝜑𝜑(𝑟𝑟,𝜃𝜃,𝜙𝜙) must approach zero; 2) On the shell surface, 𝜎𝜎(𝜃𝜃,𝜙𝜙) = −𝜀𝜀0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
�
𝑟𝑟=𝑅𝑅

. 
Solution: According to the BC at 𝑟𝑟 → ∞ , 𝜑𝜑(𝑟𝑟,𝜃𝜃,𝜙𝜙) → 0 , the solution for 
𝜑𝜑(𝑟𝑟,𝜃𝜃,𝜙𝜙) can be written as (for 𝑟𝑟 > 𝑅𝑅), 

𝜑𝜑(𝑟𝑟,𝜃𝜃,𝜙𝜙) = � � 𝐵𝐵𝑙𝑙𝑚𝑚𝑟𝑟−(𝑙𝑙+1)
𝑙𝑙

𝑚𝑚=−𝑙𝑙

∞

𝑙𝑙=0

Y𝑙𝑙𝑚𝑚(𝜃𝜃,𝜙𝜙)  

Using the BC at 𝑟𝑟 = 𝑅𝑅 which is related to the surface charge density, we have 

𝜎𝜎(𝜃𝜃,𝜙𝜙) = 𝜀𝜀0� � (𝑙𝑙 + 1)𝐵𝐵𝑙𝑙𝑚𝑚𝑅𝑅−(𝑙𝑙+2)
𝑙𝑙

𝑚𝑚=−𝑙𝑙

∞

𝑙𝑙=0

Y𝑙𝑙𝑚𝑚(𝜃𝜃,𝜙𝜙)  

Using the orthogonality property of  Y𝑙𝑙𝑚𝑚(𝜃𝜃,𝜙𝜙), which states that 

� 𝑑𝑑𝜙𝜙
2𝜋𝜋

0
� sin𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋

0
Y𝑙𝑙𝑚𝑚(𝜃𝜃,𝜙𝜙)𝑌𝑌𝑙𝑙′𝑚𝑚′

∗ (𝜃𝜃,𝜙𝜙) = 𝛿𝛿𝑚𝑚𝑚𝑚′𝛿𝛿𝑙𝑙𝑙𝑙′  

we have 

𝐵𝐵𝑙𝑙𝑚𝑚 =
𝑅𝑅(𝑙𝑙+2)

𝑙𝑙 + 1
� 𝑑𝑑𝜙𝜙
2𝜋𝜋

0
� sin𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋

0
𝜎𝜎(𝜃𝜃,𝜙𝜙)𝑌𝑌𝑙𝑙𝑚𝑚∗ (𝜃𝜃,𝜙𝜙)  
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Fig. 7.5 The cylindrical coordinates. 

 

7.5 Boundary Value Problems with Cylindrical Symmetry 
In systems with cylindrical symmetry, the potential 𝜑𝜑(𝜌𝜌,𝜙𝜙, 𝑧𝑧) depends on the 
radius 𝜌𝜌, azimuthal angle 𝜙𝜙, and height 𝑧𝑧 along the cylinder’s axis, as shown in 
Figure 7.5. When applying Laplace's equation in cylindrical coordinates, it is 
expressed as, 

1
𝜌𝜌
𝜕𝜕
𝜕𝜕𝜌𝜌

�𝜌𝜌
𝜕𝜕𝜑𝜑
𝜕𝜕𝜌𝜌
� +

1
𝜌𝜌2
𝜕𝜕2𝜑𝜑
𝜕𝜕𝜙𝜙2 +

𝜕𝜕2𝜑𝜑
𝜕𝜕𝑧𝑧2

= 0. (7.31) 

To solve for the potential, we assume 𝜑𝜑(𝜌𝜌,𝜙𝜙, 𝑧𝑧) = 𝑅𝑅(𝜌𝜌)Φ(𝜙𝜙)𝑍𝑍(𝑧𝑧). Substituting 
this form into Laplace’s equation and separating variables yields three ODEs, 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑑𝑑2𝑍𝑍

𝑑𝑑𝑧𝑧2
− 𝑘𝑘2𝑍𝑍 = 0

𝑑𝑑2Φ
𝑑𝑑𝜙𝜙2 + 𝑣𝑣2Φ = 0

𝑑𝑑2𝑅𝑅
𝑑𝑑𝜌𝜌2

+
1
𝜌𝜌
𝑑𝑑𝑅𝑅
𝑑𝑑𝜌𝜌

+ �𝑘𝑘2 −
𝑣𝑣2

𝜌𝜌 �
𝑅𝑅 = 0

, (7.32) 

where 𝑘𝑘2 and 𝑣𝑣2 are separation constants that will affect the behavior and form of 
the solution. The general solutions for these three ODEs can be written as, 

𝑍𝑍𝑘𝑘(𝑧𝑧) = �
𝐴𝐴0 + 𝐵𝐵0𝑧𝑧, 𝑘𝑘 = 0

𝐴𝐴𝑘𝑘𝑒𝑒𝑘𝑘𝛾𝛾 + 𝐵𝐵𝑘𝑘𝑒𝑒−𝑘𝑘𝛾𝛾, 𝑘𝑘 ≠ 0 , (7.33) 

Φ𝑣𝑣(𝜙𝜙) = �
𝐶𝐶0 + 𝐷𝐷0𝜙𝜙, 𝑣𝑣 = 0

𝐶𝐶𝑣𝑣𝑒𝑒𝑖𝑖𝑣𝑣𝑖𝑖 + 𝐷𝐷𝑣𝑣𝑒𝑒−𝑖𝑖𝑣𝑣𝑖𝑖, 𝑣𝑣 ≠ 0 , (7.34) 

x

y

z

O
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𝑅𝑅(𝜌𝜌) =

⎩
⎨

⎧
𝐸𝐸0 + 𝐹𝐹0ln𝜌𝜌, 𝑘𝑘 = 0, 𝑣𝑣 = 0  
𝐸𝐸𝑣𝑣𝜌𝜌𝑣𝑣 + 𝐹𝐹𝑣𝑣𝜌𝜌−𝑣𝑣, 𝑘𝑘 = 0, 𝑣𝑣 ≠ 0
𝐸𝐸𝑘𝑘𝑣𝑣𝐽𝐽𝑣𝑣(𝑘𝑘𝜌𝜌) + 𝐹𝐹𝑘𝑘𝑣𝑣𝑁𝑁𝑣𝑣(𝑘𝑘𝜌𝜌),   𝑘𝑘2 > 0
𝐸𝐸𝑘𝑘𝑣𝑣𝐼𝐼𝑣𝑣(𝑘𝑘𝜌𝜌) + 𝐹𝐹𝑘𝑘𝑣𝑣𝐾𝐾𝑣𝑣(𝑘𝑘𝜌𝜌),   𝑘𝑘2 < 0

. (7.35) 

where 𝐽𝐽𝑣𝑣(𝑥𝑥)  and 𝑁𝑁𝑣𝑣(𝑥𝑥)  are called Bessel functions and Neumann functions 
respectively, and 𝐼𝐼𝑣𝑣(𝑥𝑥) and 𝐾𝐾𝑣𝑣(𝑥𝑥) are modified Bessel functions of the first and 
second kinds. These functions have distinct behaviors, making them suitable for 
different boundary conditions and physical contexts 

 
Bessel Functions 𝑱𝑱𝒗𝒗(𝒙𝒙) 

Bessel functions, named after Friedrich Bessel, are central to solving 
cylindrical and spherical problems in physics, such as vibrations of circular 
membranes and heat conduction in cylindrical objects. The Bessel functions of the 
first kind  𝐽𝐽𝑣𝑣(𝑥𝑥) are regular at 𝑥𝑥 = 0, while the Neumann functions 𝑁𝑁𝑣𝑣(𝑥𝑥) (Bessel 
functions of the second kind) diverge at 𝑥𝑥 = 0. 
The Bessel functions 𝐽𝐽𝑣𝑣(𝑥𝑥) can be expressed in series, 

𝐽𝐽𝑣𝑣(𝑥𝑥) = �
(−1)𝑖𝑖

𝑖𝑖! (𝑣𝑣 + 𝑖𝑖)!
�
𝑥𝑥
2
�
𝑣𝑣+2𝑖𝑖∞

𝑖𝑖=0

 

An alternative expression for 𝐽𝐽𝑣𝑣(𝑥𝑥) is its integral representation, 

𝐽𝐽𝑣𝑣(𝑥𝑥) =
1
𝜋𝜋
� cos(𝑣𝑣𝜃𝜃 − 𝑥𝑥 sin𝜃𝜃)𝑑𝑑𝜃𝜃
𝜋𝜋

0
 

Its generating function for Bessel functions is 

𝑔𝑔(𝑥𝑥, 𝑡𝑡) = 𝑒𝑒�
𝛼𝛼
2��𝑜𝑜−

1
𝑜𝑜� = � 𝐽𝐽𝑣𝑣(𝑥𝑥)𝑡𝑡𝑣𝑣

∞

𝑣𝑣=−∞

 

Bessel functions have the following properties: 
1) 𝐽𝐽−𝑣𝑣(𝑥𝑥) = (−1)𝑣𝑣𝐽𝐽𝑣𝑣(𝑥𝑥) 
2) 𝐽𝐽𝑣𝑣+1(𝑥𝑥) = 𝑣𝑣

𝛼𝛼
𝐽𝐽𝑣𝑣(𝑥𝑥)− 𝐽𝐽′𝑣𝑣(𝑥𝑥) 

For some lower orders, Bessel functions simplify to familiar expressions: 

𝐽𝐽0(𝑥𝑥) =
sin𝑥𝑥
𝑥𝑥

 

𝐽𝐽1(𝑥𝑥) =
sin𝑥𝑥
𝑥𝑥2

−
cos𝑥𝑥
𝑥𝑥

 

 

𝐽𝐽2(𝑥𝑥) = �
3
𝑥𝑥2

− 1�
sin𝑥𝑥
𝑥𝑥

−
3 cos𝑥𝑥
𝑥𝑥2

 

 

𝐽𝐽3(𝑥𝑥) = �
15
𝑥𝑥3

−
6
𝑥𝑥
�

sin𝑥𝑥
𝑥𝑥

− �
15
𝑥𝑥2

− 1�
cos𝑥𝑥
𝑥𝑥

 

Below is a representative plot of these Bessel functions: 
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𝐽𝐽𝑣𝑣(𝑥𝑥) oscillates similarly to sine and cosine functions, with their amplitude 
gradually decaying as x increases, i.e., each Bessel function has multiple zero 
locations. Also, 𝐽𝐽𝑣𝑣(𝑥𝑥) is finite at 𝑥𝑥 = 0. 

Orthogonality: Let 𝑎𝑎𝑣𝑣𝑚𝑚 is the nth zero of 𝐽𝐽𝑣𝑣(𝑥𝑥), then 

� 𝐽𝐽𝑣𝑣 �𝑎𝑎𝑣𝑣𝑚𝑚
𝜌𝜌
𝑎𝑎
� 𝐽𝐽𝑣𝑣 �𝑎𝑎𝑣𝑣𝑚𝑚′

𝜌𝜌
𝑎𝑎
� 𝜌𝜌𝑑𝑑𝜌𝜌 =

𝑎𝑎2

2

𝛼𝛼

0
[𝐽𝐽𝑣𝑣+1(𝑎𝑎𝑣𝑣𝑚𝑚)]2𝛿𝛿𝑚𝑚𝑚𝑚′  

This orthogonality is useful in expanding functions in terms of Bessel functions 
when solving boundary value problems in cylindrical geometries. 

Neumann function 𝑵𝑵𝒗𝒗(𝒙𝒙) 

The Neumann functions (Bessel functions of the second kind) 𝑁𝑁𝑣𝑣(𝑥𝑥) can be 
written as, 

𝑁𝑁𝑣𝑣(𝑥𝑥) =
𝐽𝐽𝑣𝑣(𝑥𝑥) cos𝑣𝑣𝜋𝜋 − 𝐽𝐽−𝑣𝑣(𝑥𝑥)

sin𝑣𝑣𝜋𝜋
 

or, 

𝑁𝑁𝑣𝑣(𝑥𝑥) =
2
𝜋𝜋
� cos(𝑥𝑥 cosh 𝑡𝑡)𝑑𝑑𝑡𝑡
𝜋𝜋

0
 

Below are some plots of lowest order Neumann functions: 
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𝑁𝑁𝑣𝑣(𝑥𝑥) also oscillates similarly to sine and cosine functions, with their amplitude 
gradually decaying as x increases. However, 𝐽𝐽𝑣𝑣(𝑥𝑥) approaches to −∞ when 𝑥𝑥 →
0. 

Modified Bessel Functions 𝑰𝑰𝒗𝒗(𝒙𝒙) and 𝑲𝑲𝒗𝒗(𝒙𝒙) 

The modified Bessel functions of the first kind 𝐼𝐼𝑣𝑣(𝑥𝑥) can be written as, 

𝐼𝐼𝑣𝑣(𝑥𝑥) = 𝑒𝑒−
𝑖𝑖𝑣𝑣𝜋𝜋
2 𝐽𝐽𝑣𝑣 �𝑥𝑥𝑒𝑒

𝑖𝑖𝜋𝜋
2 � = �

1
𝑖𝑖! (𝑣𝑣 + 𝑖𝑖)!

�
𝑥𝑥
2
�
𝑣𝑣+2𝑖𝑖∞

𝑖𝑖=0

 

Below is a plot of some 𝐼𝐼𝑣𝑣(𝑥𝑥): 

 
For small values of x, 𝐼𝐼𝑣𝑣(𝑥𝑥) behaves similarly to a power function, increasing 
gradually as x increases from zero. The function does not oscillate but grows 
smoothly from zero. The large-x approximation for 𝐼𝐼𝑣𝑣(𝑥𝑥) is 𝐼𝐼𝑣𝑣(𝑥𝑥) ≈ 𝑖𝑖𝑥𝑥

√2𝜋𝜋𝛼𝛼
. 
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The modified Bessel functions of the second kind 𝐾𝐾𝑣𝑣(𝑥𝑥) can be expressed as, 

𝐾𝐾𝑣𝑣(𝑥𝑥) =
𝜋𝜋
2
𝐼𝐼−𝑣𝑣(𝑥𝑥)− 𝐼𝐼𝑣𝑣(𝑥𝑥)

sin𝑣𝑣𝜋𝜋
 

Below is a plot of some 𝐾𝐾𝑣𝑣(𝑥𝑥): 

 
For small values of x, 𝐾𝐾𝑣𝑣(𝑥𝑥) diverges, meaning it goes to infinity as x approaches 
zero. The form of divergence depends on the order v, 

𝐾𝐾𝑣𝑣(𝑥𝑥) ≈ �
−ln𝑥𝑥, 𝑣𝑣 = 0

Γ(𝑣𝑣)
2

�
2
𝑥𝑥
�
𝑣𝑣

, 𝑣𝑣 > 0
 

The large-x approximation for 𝐾𝐾𝑣𝑣(𝑥𝑥) is 

𝐼𝐼𝑣𝑣(𝑥𝑥) ≈ �
𝜋𝜋

2𝑥𝑥
𝑒𝑒−𝛼𝛼 

 

Example 7.5 Consider an infinitely long conducting cylinder of radius a, split along its long 
axis into two half-cylinders, with an infinitesimal gap separating them. A potential 
difference 𝑉𝑉0 is applied between the two halves, such that one half has a potential 
of  𝑉𝑉0/2 and the other has a potential of −𝑉𝑉0/2, as shown in Fig. 7.6. Find the 
electrostatic potential inside the cylinder.  
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Fig. 7.6 A halved conducting cylinder with a potential difference applied across 

the two halves. 

Discussion: Since the cylinder is assumed to be infinitely long, the problem can 
be treated as two-dimensional, with no dependence on the z-coordinate. Thus, the 
potential can be expressed as, 𝜑𝜑(𝜌𝜌,𝜙𝜙) . Since there are no charges inside the 
cylinder, 𝜑𝜑(𝜌𝜌,𝜙𝜙) also satisfy the Laplace’s equation. According to Equations 
7.33 and 7.35, this implies that   𝑘𝑘 = 0. There are three BCs: in the center of the 
cylinder, 𝜑𝜑(𝜌𝜌 → 0,𝜙𝜙) shall be finite; to make the solution more symmetric, we 
can assume that the top cylinder has a potential of 𝑉𝑉0/2, while the bottom cylinder 
has −𝑉𝑉0/2.  

Solution:  

Step 1. General Solution for 𝜑𝜑(𝜌𝜌,𝜙𝜙) 

Since 𝑘𝑘 = 0 ,according to Equations 7.33 – 7.35, the general solution for the 
𝜑𝜑(𝜌𝜌,𝜙𝜙) can be written as, 

𝜑𝜑(𝜌𝜌,𝜙𝜙) = �(𝐶𝐶𝑣𝑣 cos𝑣𝑣𝜙𝜙 + 𝐷𝐷𝑣𝑣 sin𝑣𝑣𝜙𝜙)(𝐸𝐸𝑣𝑣𝜌𝜌𝑣𝑣 + 𝐹𝐹𝑣𝑣𝜌𝜌−𝑣𝑣)
∞

𝑣𝑣=1

 

The series starts from 𝒗𝒗 = 𝟏𝟏  because the v=0v = 0v=0 term would 
correspond to a constant potential, which is not relevant for this problem due 
to the specified boundary conditions.  

 

Step 2. Implement of BCs 

The BCs are  
(1) At 𝜌𝜌 → 0, 𝜑𝜑(𝜌𝜌 → 0,𝜙𝜙) shall be finite 

(2) 𝜑𝜑(𝑎𝑎,𝜙𝜙) = �
𝑉𝑉0
2

    for 0 ≤ 𝜙𝜙 < 𝜋𝜋 

−𝑉𝑉0
2

   for− 𝜋𝜋 ≤ 𝜙𝜙 < 0
 

x

y

O
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To ensure that the potential remains finite at the origin, we must set 𝐹𝐹𝑣𝑣 = 0 for all 
𝑣𝑣. In addition, the potential changes sign between 𝑉𝑉0/2 and −𝑉𝑉0/2, indicating that 
𝜑𝜑(𝜌𝜌,𝜙𝜙) is an odd function in 𝜙𝜙. Therefore, all 𝐶𝐶𝑣𝑣 terms (cosine terms) must be 
zero, leaving, 

𝜑𝜑(𝜌𝜌,𝜙𝜙) = �𝐷𝐷𝑣𝑣 sin𝑣𝑣𝜙𝜙 𝜌𝜌𝑣𝑣
∞

𝑣𝑣=1

 

 
Step 3. Determination of 𝐷𝐷𝑣𝑣 
To find the coefficients 𝐷𝐷𝑣𝑣, we apply the boundary condition at 𝜌𝜌 = 𝑎𝑎,  

𝜑𝜑(𝑎𝑎,𝜙𝜙) = �𝐷𝐷𝑣𝑣𝑎𝑎𝑣𝑣 sin𝑣𝑣𝜙𝜙
∞

𝑣𝑣=1

 

We utilize the orthogonality of the sine functions to solve for 𝐷𝐷𝑣𝑣. Multiplying both 
sides of the boundary equation by sin𝑣𝑣′𝜙𝜙 and integrating from −𝜋𝜋 to 𝜋𝜋 gives 

� 𝜑𝜑(𝑎𝑎,𝜙𝜙) sin𝑣𝑣′𝜙𝜙 𝑑𝑑𝜙𝜙
𝜋𝜋

−𝜋𝜋
= � �𝐷𝐷𝑣𝑣𝑎𝑎𝑣𝑣 sin𝑣𝑣𝜙𝜙

∞

𝑣𝑣=1

sin𝑣𝑣′𝜙𝜙 𝑑𝑑𝜙𝜙
𝜋𝜋

−𝜋𝜋
 

The left-hand side integral evaluates to  

� 𝜑𝜑(𝑎𝑎,𝜙𝜙) sin𝑣𝑣′𝜙𝜙 𝑑𝑑𝜙𝜙
𝜋𝜋

−𝜋𝜋
= �

𝑉𝑉0
2

sin𝑣𝑣′𝜙𝜙 𝑑𝑑𝜙𝜙
𝜋𝜋

0
− �

𝑉𝑉0
2

sin𝑣𝑣′𝜙𝜙 𝑑𝑑𝜙𝜙
0

−𝜋𝜋
 

=
𝑉𝑉0
𝑣𝑣′ �

1− (−1)𝑣𝑣′�  

The right-hand side becomes 

� �𝐷𝐷𝑣𝑣𝑎𝑎𝑣𝑣 sin𝑣𝑣𝜙𝜙
∞

𝑣𝑣=1

sin𝑣𝑣′𝜙𝜙 𝑑𝑑𝜙𝜙
𝜋𝜋

−𝜋𝜋
= � 𝐷𝐷𝑣𝑣𝑎𝑎𝑣𝑣� sin𝑣𝑣𝜙𝜙

∞

𝑣𝑣=1

sin𝑣𝑣′𝜙𝜙 𝑑𝑑𝜙𝜙
𝜋𝜋

−𝜋𝜋
= 𝜋𝜋𝐷𝐷𝑣𝑣𝑎𝑎𝑣𝑣  

Compare the right and left sides, we obtain  

𝐷𝐷𝑣𝑣 =
𝑉𝑉0

𝜋𝜋𝑣𝑣𝑎𝑎𝑣𝑣
[1 − (−1)𝑣𝑣] 

 
Step 4. Final solution for the potential 
The final expression for the electrostatic potential inside the cylinder is  

𝜑𝜑(𝑎𝑎,𝜙𝜙) = �𝜑𝜑(𝑎𝑎,𝜙𝜙) = �
𝑉𝑉0

𝜋𝜋𝑣𝑣𝑎𝑎𝑣𝑣
[1 − (−1)𝑣𝑣]

∞

𝑣𝑣=1

𝜌𝜌𝑣𝑣 sin𝑣𝑣𝜙𝜙
∞

𝑣𝑣=1

 

The term [1 − (−1)𝑣𝑣] ensures that only odd harmonics contribute to the solution, 
reflecting the odd symmetry of the potential with respect to 𝜑𝜑 . Also, the 
coefficients 𝐷𝐷𝑣𝑣  decrease as 𝑣𝑣  increases, indicating that higher harmonics 
contribute less to the overall potential. 

 Special Cases of Boundary Value Problems with Cylindrical Symmetry 

In cylindrical symmetry, Laplace’s equation can often be simplified under specific 
boundary conditions and assumptions. Below, we outline four typical cases where 
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symmetry allows us to reduce the problem to two-dimensional or simplified forms, 
each leading to particular solution structures. 

(1) Infinite z-direction with boundary conditions in 𝜌𝜌 and 𝜙𝜙 
For a cylinder that extends infinitely along the z-axis with boundary conditions 
only in the radial and azimuthal directions, the potential 𝜑𝜑(𝜌𝜌,𝜙𝜙) does not depend 
on z. Thus, Laplace's equation, Equation 7.31, reduces to, 

1
𝜌𝜌
𝜕𝜕
𝜕𝜕𝜌𝜌

�𝜌𝜌
𝜕𝜕𝜑𝜑
𝜕𝜕𝜌𝜌
� +

1
𝜌𝜌2
𝜕𝜕2𝜑𝜑
𝜕𝜕𝜙𝜙2 = 0. (7.36) 

This implies that 𝑘𝑘 = 0, and the solutions for the functions of 𝜌𝜌 and 𝜙𝜙 are, 

Φ𝑣𝑣(𝜙𝜙) = �
𝐶𝐶0 + 𝐷𝐷0𝜙𝜙, 𝑣𝑣 = 0

𝐶𝐶𝑣𝑣𝑒𝑒𝑖𝑖𝑣𝑣𝑖𝑖 + 𝐷𝐷𝑣𝑣𝑒𝑒−𝑖𝑖𝑣𝑣𝑖𝑖, 𝑣𝑣 ≠ 0 , (7.37) 

R𝑣𝑣(𝜌𝜌) = �
𝐸𝐸0 + 𝐹𝐹0ln𝜌𝜌, 𝑣𝑣 = 0
𝐸𝐸𝑣𝑣𝜌𝜌𝑣𝑣 + 𝐹𝐹𝑣𝑣𝜌𝜌−𝑣𝑣, 𝑣𝑣 ≠ 0 , (7.38) 

The general solution 𝜑𝜑(𝜌𝜌,𝜙𝜙) inside the cylinder can be expressed as, 

𝜑𝜑(𝜌𝜌,𝜙𝜙) = (𝐶𝐶0 + 𝐷𝐷0𝜙𝜙)(𝐸𝐸0 + 𝐹𝐹0ln𝜌𝜌) + �(𝐶𝐶𝑣𝑣 cos𝑣𝑣𝜙𝜙 + 𝐷𝐷𝑣𝑣 sin𝑣𝑣𝜙𝜙)(𝐸𝐸𝑣𝑣𝜌𝜌𝑣𝑣 + 𝐹𝐹𝑣𝑣𝜌𝜌−𝑣𝑣)
∞

𝑣𝑣=1

(7.39) 

(2) Semi-infinite cylinder 
If the cylinder has azimuthal symmetry and extends infinitely in the positive or 
negative z-direction, the potential 𝜑𝜑(𝜌𝜌, 𝑧𝑧) is independent of 𝜙𝜙, reducing Laplace’s 
equation to, 

1
𝜌𝜌
𝜕𝜕
𝜕𝜕𝜌𝜌

�𝜌𝜌
𝜕𝜕𝜑𝜑
𝜕𝜕𝜌𝜌
� +

𝜕𝜕2𝜑𝜑
𝜕𝜕𝑧𝑧2

= 0. (7.40) 

In this case, we impose 𝜑𝜑(𝜌𝜌, 𝑧𝑧 → ∞) → 0  as |𝑧𝑧| → ∞ , indicating the solution 
𝑍𝑍𝑘𝑘(𝑧𝑧) has the form 

𝑍𝑍𝑘𝑘(𝑧𝑧) = �
𝐴𝐴0 + 𝐵𝐵0𝑧𝑧, 𝑘𝑘 = 0

𝐴𝐴𝑘𝑘𝑒𝑒𝑘𝑘𝛾𝛾 + 𝐵𝐵𝑘𝑘𝑒𝑒−𝑘𝑘𝛾𝛾, 𝑘𝑘 ≠ 0 , (7.41) 

with 𝑘𝑘2 > 0. For 𝑅𝑅𝑣𝑣(𝜌𝜌), we use Bessel functions, leading to 

𝑅𝑅𝑣𝑣(𝜌𝜌) = �
𝐸𝐸0 + 𝐹𝐹0ln𝜌𝜌, 𝑘𝑘 = 0

𝐸𝐸𝑘𝑘𝑣𝑣𝐽𝐽𝑣𝑣(𝑘𝑘𝜌𝜌) + 𝐹𝐹𝑘𝑘𝑣𝑣𝑁𝑁𝑣𝑣(𝑘𝑘𝜌𝜌), 𝑘𝑘2 > 0 , (7.42) 

Since 𝜑𝜑 is finite at 𝜌𝜌 = 0, we set 𝐹𝐹𝑘𝑘𝑣𝑣 = 0, giving 
𝑅𝑅𝑣𝑣(𝜌𝜌) = 𝐸𝐸𝑘𝑘𝑣𝑣𝐽𝐽𝑣𝑣(𝑘𝑘𝜌𝜌) (7.43) 

Thus, the general solution 𝜑𝜑(𝜌𝜌, 𝑧𝑧) inside the cylinder can be expressed as, 

𝜑𝜑(𝜌𝜌, 𝑧𝑧) = 𝐴𝐴0 + ��𝐴𝐴𝑘𝑘𝑒𝑒𝑘𝑘𝛾𝛾 + 𝐵𝐵𝑘𝑘𝑒𝑒−𝑘𝑘𝛾𝛾�𝐽𝐽𝑣𝑣(𝑘𝑘𝜌𝜌)
∞

𝑘𝑘=1

. (7.44) 

(3) Cylinders with two lids 
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For a finite cylinder with closed top and bottom surfaces, assuming azimuthal 
symmetry, Laplace’s equation also reduces to Equation 7.40. However, due to the 
finite height h with top and bottom surfaces at specified potentials, the solution in 
z takes the form, 

𝑍𝑍𝑘𝑘(𝑧𝑧) = � 𝐴𝐴0 + 𝐵𝐵0𝑧𝑧, 𝑘𝑘 = 0
𝐴𝐴𝑘𝑘 cos𝑘𝑘𝑧𝑧 + 𝐵𝐵𝑘𝑘 sin𝑘𝑘𝑧𝑧 , 𝑘𝑘 ≠ 0 , (7.45) 

where k is chosen such that 𝑘𝑘2 < 0 to satisfy boundary conditions on the top and 
bottom surfaces. Thus, 

𝑅𝑅𝑣𝑣(𝜌𝜌) = 𝐸𝐸𝑘𝑘𝑣𝑣𝐼𝐼𝑣𝑣(𝑘𝑘𝜌𝜌) + 𝐹𝐹𝑘𝑘𝑣𝑣𝐾𝐾𝑣𝑣(𝑘𝑘𝜌𝜌). (7.46) 
The general solution for 𝜑𝜑(𝜌𝜌, 𝑧𝑧) within the cylinder then becomes, 

𝜑𝜑(𝜌𝜌, 𝑧𝑧) = �(𝐴𝐴𝑘𝑘 cos𝑘𝑘𝑧𝑧 + 𝐵𝐵𝑘𝑘 sin𝑘𝑘𝑧𝑧)[𝐸𝐸𝑘𝑘𝑣𝑣𝐼𝐼𝑣𝑣(𝑘𝑘𝜌𝜌) + 𝐹𝐹𝑘𝑘𝑣𝑣𝐾𝐾𝑣𝑣(𝑘𝑘𝜌𝜌)]
∞

𝑘𝑘=1

. (7.47) 

(4) Cylinder with boundary condition 𝜑𝜑(𝜌𝜌 = 𝑎𝑎,𝜙𝜙, 𝑧𝑧) = 0 

When the boundary at 𝜌𝜌 = 𝑎𝑎 is set to zero potential, the solution can incorporate 
Bessel functions that satisfy the boundary conditions. In this case, we express 
𝜑𝜑(𝜌𝜌,𝜙𝜙, 𝑧𝑧) as 

𝜑𝜑(𝜌𝜌,𝜙𝜙, 𝑧𝑧) = � �(𝐶𝐶𝑣𝑣𝑚𝑚 cos𝑘𝑘𝑣𝑣𝑚𝑚𝜙𝜙 + 𝐷𝐷𝑣𝑣𝑚𝑚 sin𝑘𝑘𝑣𝑣𝑚𝑚𝜙𝜙)𝐽𝐽𝑣𝑣(𝑘𝑘𝑣𝑣𝑚𝑚𝜌𝜌) sinh(𝑘𝑘𝑣𝑣𝑚𝑚𝑧𝑧)
∞

𝑣𝑣=1

∞

𝑚𝑚=0

, (7.48) 

where 𝑘𝑘𝑣𝑣𝑚𝑚 = 𝑎𝑎𝑣𝑣𝑚𝑚/2 , and 𝑎𝑎𝑣𝑣𝑚𝑚  is the m-th zero of 𝐽𝐽𝑣𝑣(𝑥𝑥) . This ensures that 
𝜑𝜑(𝜌𝜌 = 𝑎𝑎,𝜙𝜙, 𝑧𝑧) = 0 at 𝜌𝜌 = 𝑎𝑎, satisfying the boundary condition by using the zeros 
of the Bessel functions 𝐽𝐽𝑣𝑣(𝑥𝑥). 

 
Fig. 7.7 A cylinder with zero potential on its top and bottom surfaces and a fixed 

potential on its side. 

x

y

z

O



Advance Electromagnetism Theory I  Yiping Zhao, University of Georgia 

7-27 
 

Example 7.6 Consider a cylinder of height h and radius a, with its top and bottom surfaces held 
at zero potential, while the cylindrical side surface is maintained at a fixed 
potential 𝑉𝑉0 , as shown in Fig. 7.7. Find the electrostatic potential inside the 
cylinder.  

Discussion: Since the potential is fixed on the side of the cylinder and is 
independent of the azimuthal angle, we conclude that the potential 𝜑𝜑 does not 
depend on the angle 𝜙𝜙, and thus we can express it as 𝜑𝜑(𝜌𝜌, 𝑧𝑧). This implies that we 
only need to solve for radial (𝜌𝜌) and vertical (𝑧𝑧) components, with 𝑣𝑣 = 0 in the 
general solution for cylindrical coordinates (Equation 7.34). Given the boundary 
conditions where the top and bottom surfaces are held at zero potential, the solution 
in the z-direction must be either a sine or cosine function, requiring   𝑘𝑘2 < 0 to 
ensure periodicity in z. Consequently, the radial function 𝑅𝑅(𝜌𝜌)  should be a 
combination of modified Bessel functions 𝐼𝐼0(𝑘𝑘𝜌𝜌) and 𝐾𝐾0(𝑘𝑘𝜌𝜌), as these functions 
naturally arise in cylindrical systems without angular dependence.   

Solution: Based on the above reasoning, the general form for the potential 𝜑𝜑(𝜌𝜌, 𝑧𝑧) 
within the cylinder is, 

𝜑𝜑(𝜌𝜌, 𝑧𝑧) = �(𝐴𝐴𝑘𝑘 cos𝑘𝑘𝑧𝑧 + 𝐵𝐵𝑘𝑘 sin𝑘𝑘𝑧𝑧)
∞

𝑘𝑘=1

[𝐸𝐸𝑘𝑘𝐼𝐼0(𝑘𝑘𝜌𝜌) + 𝐹𝐹𝑘𝑘𝐾𝐾0(𝑘𝑘𝜌𝜌)]  

The corresponding BCs are 
(1) 𝜑𝜑(𝜌𝜌, 0) = 0 
(2) 𝜑𝜑(𝜌𝜌,ℎ) = 0 
(3) 𝜑𝜑(𝑎𝑎, 𝑧𝑧) = 𝑉𝑉0 
(4) When 𝜌𝜌 → 0, 𝜑𝜑(𝜌𝜌, 𝑧𝑧) shall be finite 

Step 1. Applying the finite potential condition (BC #4) 

Since 𝐾𝐾0(𝑘𝑘𝜌𝜌) → ∞  as 𝜌𝜌 → 0 , it is not physically valid for potential in 𝜌𝜌 < 𝑎𝑎 
region, i.e., 𝐹𝐹𝑘𝑘 = 0 for all 𝑘𝑘. Therefore, the potential can be written as,  

𝜑𝜑(𝜌𝜌, 𝑧𝑧) = �(𝐴𝐴𝑘𝑘 cos𝑘𝑘𝑧𝑧 + 𝐵𝐵𝑘𝑘 sin𝑘𝑘𝑧𝑧)
∞

𝑘𝑘=1

𝐼𝐼0(𝑘𝑘𝜌𝜌)  

Implement BC#1 and BC#2, we have 

�
𝐴𝐴𝑘𝑘 cos 0 + 𝐵𝐵𝑘𝑘 sin 0 = 0
𝐴𝐴𝑘𝑘 cos𝑘𝑘ℎ + 𝐵𝐵𝑘𝑘 sin𝑘𝑘ℎ = 0 ⟹ �𝐴𝐴𝑘𝑘 = 0

𝐵𝐵𝑘𝑘 ≠ 0  

In order to have the second equation equals to zero, we have, 

𝑘𝑘 =
𝑛𝑛𝜋𝜋
ℎ

, 𝑛𝑛 = 1, 2,⋯  

Thus, the potential reduces to 
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𝜑𝜑(𝜌𝜌, 𝑧𝑧) = �𝐵𝐵𝜕𝜕 sin �
𝑛𝑛𝜋𝜋
ℎ
𝑧𝑧�

∞

𝜕𝜕=1

𝐼𝐼0 �
𝑛𝑛𝜋𝜋
ℎ
𝜌𝜌�  

To find out 𝐵𝐵𝜕𝜕, we can implement BC#3, 

𝜑𝜑(𝑎𝑎, 𝑧𝑧) = �𝐵𝐵𝜕𝜕 sin �
𝑛𝑛𝜋𝜋
ℎ
𝑧𝑧�

∞

𝜕𝜕=1

𝐼𝐼0 �
𝑛𝑛𝜋𝜋
ℎ
𝑎𝑎�  

Use the orthogonality property of sine functions, multiply sin �𝜕𝜕′𝜋𝜋
ℎ
𝑧𝑧� on both 

sides and perform the integration with respect to z, we have 

� 𝑉𝑉0
ℎ

0
sin�

𝑛𝑛′𝜋𝜋
ℎ
𝑧𝑧�𝑑𝑑𝑧𝑧 = � �𝐵𝐵𝜕𝜕 sin �

𝑛𝑛𝜋𝜋
ℎ
𝑧𝑧�

∞

𝜕𝜕=1

𝐼𝐼0 �
𝑛𝑛𝜋𝜋
ℎ
𝑎𝑎� sin�

𝑛𝑛′𝜋𝜋
ℎ
𝑧𝑧�𝑑𝑑𝑧𝑧

ℎ

0
 

We can obtain 

𝐵𝐵𝜕𝜕′ =
2𝑉𝑉0

𝑛𝑛′𝜋𝜋𝐼𝐼0 �
𝑛𝑛′𝜋𝜋
ℎ 𝑎𝑎�

[1 − (−1)𝜕𝜕′] 

Therefore, 

𝜑𝜑(𝜌𝜌, 𝑧𝑧) = �
2𝑉𝑉0

𝑛𝑛𝜋𝜋𝐼𝐼0 �
𝑛𝑛𝜋𝜋
ℎ 𝑎𝑎�

[1 − (−1)𝜕𝜕] sin �
𝑛𝑛𝜋𝜋
ℎ
𝑧𝑧�

∞

𝜕𝜕=1

𝐼𝐼0 �
𝑛𝑛𝜋𝜋
ℎ
𝜌𝜌� 
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