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Chapter 10 
Magnetic Multipole, Force, and 
Energy 
 
10.1 Magnetic Multipole Expansion 
 
For a finite volume of current distribution as shown in Figure 10.1, with the source 
radius 𝑟𝑟′ < 𝑅𝑅, where 𝑅𝑅 is the maximum source radius of the system, the vector potential 
can be written as, 

𝐴𝐴(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋∭

𝐽𝐽(𝑟𝑟′)
|𝑟𝑟−𝑟𝑟′|

𝑑𝑑𝑑𝑑′𝑉𝑉 .    (10.1) 

Like the electrostatic potential, for 𝑟𝑟 ≫ 𝑅𝑅, the vector potential 𝐴𝐴(𝑟𝑟) can be expanded into 
a multipole format, 

1
|𝑟𝑟−𝑟𝑟′|

= 1
𝑟𝑟
− 𝑟𝑟′ ∙ ∇ 1

𝑟𝑟
+ 1

2
(𝑟𝑟′ ∙ ∇)2 1

𝑟𝑟
+ ⋯   (10.2) 

Or,  

 1
|𝑟𝑟−𝑟𝑟′|

= ∑ 𝑟𝑟′
𝑙𝑙

𝑟𝑟𝑙𝑙+1
∞
𝑙𝑙=0 𝑃𝑃𝑙𝑙(cos 𝜃𝜃)   (10.3) 

with cos 𝜃𝜃 = 𝑟̂𝑟 ∙ 𝑟̂𝑟′. Therefore, 

 
Fig. 10.1 Current source and far field configuration. 
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𝐴𝐴(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋
�
1
𝑟𝑟∭ 𝐽𝐽(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉 + 1

𝑟𝑟2∭ (𝑟̂𝑟 ∙ 𝑟̂𝑟′)𝐽𝐽(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉

+ 1
𝑟𝑟3∭ �3

2
(𝑟̂𝑟 ∙ 𝑟̂𝑟′)2 − 1

2
𝑟𝑟′2� 𝐽𝐽(𝑟𝑟′)𝑑𝑑𝑑𝑑′𝑉𝑉 + ⋯

�.  (10.4) 

Or  

𝐴𝐴(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋
∑ 1

𝑟𝑟𝑙𝑙+1
∞
𝑙𝑙=0 ∭ 𝑟𝑟′𝑙𝑙𝑃𝑃𝑙𝑙(cos𝜃𝜃)𝑉𝑉 𝐽𝐽(𝑟𝑟′)𝑑𝑑𝑑𝑑′.  (10.5) 

The first term in Equations 10.4 or 10.5 is from monopole contribution; the second term 
is from a dipole; the third term is from a quadrupole; and so on. 
 
 Let’s look at the first term of Equation 10.4: ∭ 𝐽𝐽(𝑟𝑟′)𝑑𝑑𝑑𝑑′𝑉𝑉  

Using the following identity, 

 ∇′ ∙ ��𝐶𝐶 ∙ 𝑟𝑟′�𝐽𝐽(𝑟𝑟′)� = 𝐶𝐶 ∙ 𝐽𝐽(𝑟𝑟′) + �𝐶𝐶 ∙ 𝑟𝑟′��∇′ ∙ 𝐽𝐽(𝑟𝑟′)�, (10.6) 

where 𝐶𝐶 is an arbitrary constant vector. And for magnetostatics, we also have ∇′ ∙
𝐽𝐽(𝑟𝑟′) = 0, thus 

∇′ ∙ ��𝐶𝐶 ∙ 𝑟𝑟′�𝐽𝐽(𝑟𝑟′)� = 𝐶𝐶 ∙ 𝐽𝐽(𝑟𝑟′),   (10.7) 

Performing a volume integration of the object shown in Figure 10.1, we have 

∭ ∇′ ∙ ��𝐶𝐶 ∙ 𝑟𝑟′�𝐽𝐽(𝑟𝑟′)�𝑉𝑉 𝑑𝑑𝑉𝑉′ = ∭ 𝐶𝐶 ∙ 𝐽𝐽(𝑟𝑟′)𝑉𝑉 𝑑𝑑𝑉𝑉′,  (10.8) 

According to Gauss’s theorem, the left side of Equation 10.8 can be written as, 

∭ ∇′ ∙ ��𝐶𝐶 ∙ 𝑟𝑟′�𝐽𝐽(𝑟𝑟′)�𝑉𝑉 𝑑𝑑𝑉𝑉′ = ∯ �𝐶𝐶 ∙ 𝑟𝑟′�𝐽𝐽(𝑟𝑟′) ∙ 𝑑𝑑𝑆𝑆′𝑆𝑆 .  (10.9) 

Here S is the enclosed surface that surrounds the current source shown in Figure 
10.1 and can be chosen arbitrarily as long as the surface encloses the current 
source. Thus, if the radius of the surface S is large enough, shown as the dashed 
sphere in Figure 10.1, the current density 𝐽𝐽(𝑟𝑟′) on the boundary surface is zero. 
Thus,  

𝐶𝐶 ∙∭ 𝐽𝐽(𝑟𝑟′)𝑉𝑉 𝑑𝑑𝑉𝑉′ = 0.    (10.10) 

Since 𝐶𝐶 is an arbitrary constant vector and Equation 10.10 is valid for any 𝐶𝐶, thus  

∭ 𝐽𝐽(𝑟𝑟′)𝑉𝑉 𝑑𝑑𝑉𝑉′ = 0.    (10.11) 

Therefore, the monopole contribution to the magnetic vector potential 𝐴𝐴(𝑟𝑟) is 
zero. This result is consistent with the fact that there is no magnetic monopole for 
electromagnetism. 
 

 Let’s look at the second term of Equation 10.4: ∭ (𝑟̂𝑟 ∙ 𝑟̂𝑟′)𝐽𝐽(𝑟𝑟′)𝑑𝑑𝑑𝑑′𝑉𝑉  

Let’s looking at the following two identities, 
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𝐶𝐶 ∙ �𝑟̂𝑟 × �𝐽𝐽(𝑟𝑟′) × 𝑟𝑟′�� = �𝐶𝐶 ∙ 𝐽𝐽(𝑟𝑟′)�(𝑟̂𝑟 ∙ 𝑟𝑟′) − (𝐶𝐶 ∙ 𝑟𝑟′)�𝑟̂𝑟 ∙ 𝐽𝐽(𝑟𝑟′)�, (10.12) 

∇′ ∙ ��𝐶𝐶 ∙ 𝑟𝑟′�(𝑟̂𝑟 ∙ 𝑟𝑟′)𝐽𝐽(𝑟𝑟′)� = �𝐶𝐶 ∙ 𝐽𝐽(𝑟𝑟′)�(𝑟̂𝑟 ∙ 𝑟𝑟′) + �𝐶𝐶 ∙ 𝑟𝑟′��𝑟̂𝑟 ∙ 𝐽𝐽(𝑟𝑟′)� 

     +�𝐶𝐶 ∙ 𝑟𝑟′�(𝑟̂𝑟 ∙ 𝑟𝑟′)�∇′ ∙ 𝐽𝐽(𝑟𝑟′)�.    (10.13) 

The 3rd term on the right side of Equation 10.13 is zero since ∇′ ∙ 𝐽𝐽(𝑟𝑟′) = 0. 
Adding Equations 10.12 and 10.13 together, we have  

�𝐶𝐶 ∙ 𝐽𝐽(𝑟𝑟′)�(𝑟̂𝑟 ∙ 𝑟𝑟′) = 1
2
𝐶𝐶 ∙ �𝑟̂𝑟 × �𝐽𝐽(𝑟𝑟′) × 𝑟𝑟′�� + 1

2
∇′ ∙ ��𝐶𝐶 ∙ 𝑟𝑟′�(𝑟̂𝑟 ∙ 𝑟𝑟′)𝐽𝐽(𝑟𝑟′)�, (10.14) 

Therefore, 

𝐶𝐶 ∙∭ (𝑟̂𝑟 ∙ 𝑟̂𝑟′)𝐽𝐽(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉 = 1
2
𝐶𝐶 ∙∭ 𝑟̂𝑟 × �𝐽𝐽(𝑟𝑟′) × 𝑟𝑟′�𝑑𝑑𝑉𝑉′𝑉𝑉   

          + 1
2∭ ∇′ ∙ ��𝐶𝐶 ∙ 𝑟𝑟′�(𝑟̂𝑟 ∙ 𝑟𝑟′)𝐽𝐽(𝑟𝑟′)�𝑑𝑑𝑉𝑉′𝑉𝑉   

      = 1
2
𝐶𝐶 ∙∭ 𝑟̂𝑟 × �𝐽𝐽(𝑟𝑟′) × 𝑟𝑟′�𝑑𝑑𝑉𝑉′𝑉𝑉 + 1

2∯ �𝐶𝐶 ∙ 𝑟𝑟′�(𝑟̂𝑟 ∙ 𝑟𝑟′)𝐽𝐽(𝑟𝑟′) ∙ 𝑑𝑑𝑆𝑆′𝑆𝑆 . (10.15)  

The second term on the right-hand side of Equation 10.15 is zero according to the 
same argument for Equation 10.9. Thus 

𝐶𝐶 ∙∭ (𝑟̂𝑟 ∙ 𝑟̂𝑟′)𝐽𝐽(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉 = 1
2
𝐶𝐶 ∙∭ 𝑟̂𝑟 × �𝐽𝐽(𝑟𝑟′) × 𝑟𝑟′�𝑑𝑑𝑉𝑉′𝑉𝑉   

Since 𝐶𝐶 is an arbitrary constant vector, therefore, 

∭ (𝑟̂𝑟 ∙ 𝑟̂𝑟′)𝐽𝐽(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉 = 𝑟̂𝑟
2

× ∭ 𝐽𝐽(𝑟𝑟′) × 𝑟𝑟′𝑑𝑑𝑉𝑉′𝑉𝑉 = �1
2∭ 𝑟𝑟′ × 𝐽𝐽(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉 � × 𝑟̂𝑟.  

(10.16) 
Let’s define the magnetic dipole moment 𝑚𝑚��⃗  as 

𝑚𝑚��⃗ = 1
2∭ 𝑟𝑟′ × 𝐽𝐽(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉 ,    (10.17) 

we have 

𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋𝑟𝑟3

𝑚𝑚��⃗ × 𝑟𝑟.   (10.18) 

 
Let’s consider a very special case, a current loop as shown in Figure 10.2. The 
vector potential 𝐴𝐴(𝑟𝑟) at P location can be written as, 

𝐴𝐴(𝑟𝑟) = 𝜇𝜇0𝐼𝐼
4𝜋𝜋 ∮

𝑑𝑑𝑙𝑙
|𝑟𝑟−𝑟𝑟′|𝐿𝐿 = 𝜇𝜇0𝐼𝐼

4𝜋𝜋
1

𝑟𝑟𝑙𝑙+1
∑ ∮ 𝑟𝑟′𝑙𝑙𝐿𝐿
∞
𝑙𝑙=0 𝑃𝑃𝑙𝑙(cos𝜃𝜃)𝑑𝑑𝑟𝑟′ =

    𝜇𝜇0
4𝜋𝜋
�1
𝑟𝑟 ∮ 𝑑𝑑𝑟𝑟′𝐿𝐿 + 1

𝑟𝑟2 ∮ (𝑟̂𝑟 ∙ 𝑟̂𝑟′)𝑑𝑑𝑟𝑟′𝐿𝐿 + 1
𝑟𝑟3 ∮ �3

2
(𝑟̂𝑟 ∙ 𝑟̂𝑟′)2 − 1

2
𝑟𝑟′2� 𝑑𝑑𝑟𝑟′𝐿𝐿 + ⋯� . (10.19) 

The first term, ∮ 𝑑𝑑𝑟𝑟′𝐿𝐿 = 0. For the second term, we have 

𝐶𝐶 ∙ ∮ (𝑟̂𝑟 ∙ 𝑟̂𝑟′)𝑑𝑑𝑟𝑟′𝐿𝐿 = ∮ (𝑟̂𝑟 ∙ 𝑟̂𝑟′)𝐶𝐶 ∙ 𝑑𝑑𝑟𝑟′𝐿𝐿   
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Fig. 10.2 A current loop. 

 

 = ∬ ∇′ × �(𝑟̂𝑟 ∙ 𝑟̂𝑟′)𝐶𝐶�𝑆𝑆 ∙ 𝑑𝑑𝑆𝑆′.   (10.20) 

Since ∇′ × �(𝑟̂𝑟 ∙ 𝑟̂𝑟′)𝐶𝐶� = [∇′(𝑟̂𝑟 ∙ 𝑟̂𝑟′)] × 𝐶𝐶 = 𝑟̂𝑟 × 𝐶𝐶, thus 

𝐶𝐶 ∙ ∮ (𝑟̂𝑟 ∙ 𝑟̂𝑟′)𝑑𝑑𝑟𝑟′𝐿𝐿 = ∬ �𝑟̂𝑟 × 𝐶𝐶�𝑆𝑆 ∙ 𝑑𝑑𝑆𝑆′ = �𝑟̂𝑟 × 𝐶𝐶� ∙ ∬ 𝑑𝑑𝑆𝑆′𝑆𝑆   

= �𝑟̂𝑟 × 𝐶𝐶� ∙ 𝑎⃗𝑎 = (𝑎⃗𝑎 × 𝑟̂𝑟) ∙ 𝐶𝐶,   (10.21) 

where 𝑎⃗𝑎 is the area vector of the current loop. Therefore, 

∮ (𝑟̂𝑟 ∙ 𝑟̂𝑟′)𝑑𝑑𝑟𝑟′𝐿𝐿 = 𝑎⃗𝑎 × 𝑟̂𝑟.    (10.22) 

Finally, according to Equation 10.19, we have, 

𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋

𝐼𝐼𝑎𝑎�⃗ ×𝑟𝑟
𝑟𝑟3

= 𝜇𝜇0
4𝜋𝜋

𝑚𝑚���⃗ ×𝑟𝑟
𝑟𝑟3

.    (10.23) 

 
 The magnetic field of a magnetic dipole 

𝐵𝐵�⃗ (𝑟𝑟) = ∇ × 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟) = ∇ × �𝜇𝜇0
4𝜋𝜋

𝑚𝑚���⃗ ×𝑟𝑟
𝑟𝑟3
� = 𝜇𝜇0

4𝜋𝜋
�𝑚𝑚��⃗ ∙ �∇ ∙ 𝑟𝑟

𝑟𝑟3
� − (𝑚𝑚��⃗ ∙ ∇) 𝑟𝑟

𝑟𝑟3
�. (10.24) 

Since ∇ ∙ 𝑟𝑟
𝑟𝑟3

= −4𝜋𝜋𝜋𝜋(𝑟𝑟), at 𝑟𝑟 ≠ 0, only the second term in Equation 10.24 is 
valid,  

𝐵𝐵�⃗ (𝑟𝑟) = − 𝜇𝜇0
4𝜋𝜋

(𝑚𝑚��⃗ ∙ ∇) 𝑟𝑟
𝑟𝑟3

= 𝜇𝜇0
4𝜋𝜋

3𝑟̂𝑟(𝑟̂𝑟∙𝑚𝑚���⃗ )−𝑚𝑚���⃗
𝑟𝑟3

 .  (10.25) 

Compare this equation to the electric field of an electric dipole, 𝐸𝐸�⃗ (𝑟𝑟) =
1

4𝜋𝜋𝜀𝜀0

3𝑟̂𝑟(𝑟̂𝑟∙𝑝⃗𝑝)−𝑝⃗𝑝
𝑟𝑟3

, they have very similar expression. 
 
 

x

y

z

I
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 Orbital and spin magnetic dipole moment 

From a classical point of view, the electrons of a molecule or an atom can be treated 
as charged particles orbiting with a specific trajectory around the nucleus. If the 
charge is 𝑞𝑞𝑘𝑘, with a velocity 𝑣⃗𝑣𝑘𝑘 = 𝑑𝑑𝑟𝑟𝑘𝑘

𝑑𝑑𝑑𝑑
  and a mass 𝑚𝑚𝑘𝑘, the current density can be 

written as 

𝐽𝐽(𝑟𝑟) = ∑ 𝑞𝑞𝑘𝑘𝑁𝑁
𝑘𝑘=1 𝑣⃗𝑣𝑘𝑘𝛿𝛿(𝑟𝑟 − 𝑟𝑟𝑘𝑘).   (10.26) 

Thus, 

 𝑚𝑚��⃗ 𝐿𝐿 = 1
2∭ 𝑟𝑟′ × 𝐽𝐽(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉 = 1

2
∑ 𝑞𝑞𝑘𝑘𝑟𝑟𝑘𝑘 ×𝑁𝑁
𝑘𝑘=1 𝑣⃗𝑣𝑘𝑘 = ∑ 𝑞𝑞𝑘𝑘

2𝑚𝑚𝑘𝑘

𝑁𝑁
𝑘𝑘=1 𝐿𝐿�⃗ 𝑘𝑘.  (10.27) 

Here 𝐿𝐿�⃗ 𝑘𝑘 = 𝑚𝑚𝑘𝑘𝑟𝑟𝑘𝑘 × 𝑣⃗𝑣𝑘𝑘 is the angular momentum of each orbiting particle. If all the 
particle has the same charge 𝑞𝑞 and mass 𝑚𝑚, we have 

𝑚𝑚��⃗ 𝐿𝐿 = 𝑞𝑞
2𝑚𝑚

∑ 𝑚𝑚𝑁𝑁
𝑘𝑘=1 𝑟𝑟𝑘𝑘 × 𝑣⃗𝑣𝑘𝑘 = 𝑞𝑞

2𝑚𝑚
𝐿𝐿�⃗ ,  (10.28) 

here 𝐿𝐿�⃗  is the total orbital angular momentum of the molecule or atom.  
 
For a spin angular momentum 𝑠𝑠, it has a magnetic moment, 

 𝑚𝑚��⃗ 𝑠𝑠 = 𝑔𝑔 𝑞𝑞
𝑚𝑚
𝑠𝑠,     (10.29) 

where 𝑔𝑔 is called the 𝑔𝑔 -factor. 
 

10.2 Magnetic Force and Torque 
Based on Section 9.12, the magnetic force 𝐹⃗𝐹𝐵𝐵 and torque 𝑁𝑁��⃗ 𝐵𝐵 acting on a current 
source in a magnetic field 𝐵𝐵�⃗  can be expressed as, 

 𝐹⃗𝐹𝐵𝐵 = ∭ 𝐽𝐽(𝑟𝑟′) × 𝐵𝐵�⃗ (𝑟𝑟′)𝑉𝑉 𝑑𝑑𝑑𝑑′,   (9.18)  

         𝑁𝑁��⃗ 𝐵𝐵 = ∭ 𝑟𝑟′ × �𝐽𝐽(𝑟𝑟′) × 𝐵𝐵�⃗ (𝑟𝑟′)�𝑉𝑉 𝑑𝑑𝑑𝑑′.  (9.19) 

The magnetic force on a current carrying wire I in a magnetic field can be written 
as 

   𝐹⃗𝐹𝐵𝐵 = 𝐼𝐼 ∫ 𝑑𝑑𝑙𝑙′ × 𝐵𝐵�⃗ (𝑟𝑟′).𝐿𝐿    (10.30) 

The force on an object with a surface current density 𝐾𝐾��⃗ (𝑟𝑟𝑠𝑠) is expressed as,  

𝐹⃗𝐹𝐵𝐵 = ∬ 𝐾𝐾��⃗ (𝑟𝑟𝑠𝑠) × 𝐵𝐵�⃗ (𝑟𝑟𝑠𝑠)𝑆𝑆 𝑑𝑑𝑑𝑑′.   (10.31) 

And for moving charges with 𝐽𝐽(𝑟𝑟) = ∑ 𝑞𝑞𝑘𝑘𝑁𝑁
𝑘𝑘=1 𝑣⃗𝑣𝑘𝑘𝛿𝛿(𝑟𝑟 − 𝑟𝑟𝑘𝑘) as shown in Equation 

10.26, one has, 

 𝐹⃗𝐹𝐵𝐵 = ∑ 𝑞𝑞𝑘𝑘𝑁𝑁
𝑘𝑘=1 𝑣⃗𝑣𝑘𝑘 × 𝐵𝐵�⃗ (𝑟𝑟𝑘𝑘).   (10.32) 
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 The magnetic force between two current carrying objects 

As shown in Figure 10.3, for two current carrying objects 1 and 2, Object 1 will 
generate a magnetic field 𝐵𝐵�⃗ 1(𝑟𝑟) at Object 2, therefore, a magnetic force 𝐹⃗𝐹2(𝑟𝑟) will 
be produced on Object 2. The magnetic field produced at 𝑟𝑟 can be written as, 

𝐵𝐵�⃗ 1(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋∭

𝐽𝐽1(𝑟𝑟′)×(𝑟𝑟−𝑟𝑟′)
|𝑟𝑟−𝑟𝑟′|3

𝑑𝑑𝑑𝑑′𝑉𝑉1
.           (10.32) 

Thus the force on Object 2 can be written as, 

𝐹⃗𝐹2 = ∭ 𝐽𝐽2(𝑟𝑟) × 𝐵𝐵�⃗ 1(𝑟𝑟)𝑉𝑉2
𝑑𝑑𝑑𝑑 = 𝜇𝜇0

4𝜋𝜋∭ 𝑑𝑑𝑑𝑑𝐽𝐽2(𝑟𝑟) × ∭ 𝐽𝐽1(𝑟𝑟′)×�𝑟𝑟−𝑟𝑟′�
|𝑟𝑟−𝑟𝑟′|3

𝑑𝑑𝑉𝑉′𝑉𝑉1𝑉𝑉2
  

  = 𝜇𝜇0
4𝜋𝜋∭ 𝑑𝑑𝑑𝑑∭ 𝑑𝑑𝑑𝑑′𝑉𝑉1

𝐽𝐽1(𝑟𝑟′)�𝐽𝐽2(𝑟𝑟)∙(𝑟𝑟−𝑟𝑟′)�−�𝐽𝐽1(𝑟𝑟′)∙𝐽𝐽2(𝑟𝑟)�(𝑟𝑟−𝑟𝑟′)
|𝑟𝑟−𝑟𝑟′|3𝑉𝑉2

. (10.34)  

Since  

∭ ∇ ∙𝑉𝑉2
𝐽𝐽2(𝑟𝑟)

|𝑟𝑟−𝑟𝑟′|
𝑑𝑑𝑑𝑑 = ∭ ∇∙𝐽𝐽2(𝑟𝑟)

|𝑟𝑟−𝑟𝑟′|𝑉𝑉2
𝑑𝑑𝑑𝑑 + ∭ 𝐽𝐽2(𝑟𝑟) ∙ ∇𝑉𝑉2

1
|𝑟𝑟−𝑟𝑟′|

𝑑𝑑𝑑𝑑, 

and  ∇ ∙ 𝐽𝐽2(𝑟𝑟) = 0, ∇ 1
|𝑟𝑟−𝑟𝑟′|

= − 𝑟𝑟−𝑟𝑟′
|𝑟𝑟−𝑟𝑟′|3

, ∭ ∇ ∙𝑉𝑉2
𝐽𝐽2(𝑟𝑟)

|𝑟𝑟−𝑟𝑟′|
𝑑𝑑𝑑𝑑 = ∯ 𝐽𝐽2(𝑟𝑟)

|𝑟𝑟−𝑟𝑟′|
∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′ = 0𝑆𝑆2

, 
thus 

𝐹⃗𝐹2 = − 𝜇𝜇0
4𝜋𝜋∭ 𝑑𝑑𝑑𝑑∭ 𝑑𝑑𝑑𝑑′𝑉𝑉1

𝐽𝐽1(𝑟𝑟′) ∙ 𝐽𝐽2(𝑟𝑟) 𝑟𝑟−𝑟𝑟′
|𝑟𝑟−𝑟𝑟′|3𝑉𝑉2

 .  (10.35) 

Based on Equation 10.35, we also expect that the magnetic force on Object 1 due 
to the magnetic field produced by Object 2 can be written as, 
 

 
Fig. 10.3 The magnetic force between two current carrying objects. 
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Fig. 10.4 The magnetic force between two current carrying loops. 

 

𝐹⃗𝐹1 = 𝜇𝜇0
4𝜋𝜋∭ 𝑑𝑑𝑑𝑑∭ 𝑑𝑑𝑑𝑑′𝑉𝑉1

𝐽𝐽1(𝑟𝑟′) ∙ 𝐽𝐽2(𝑟𝑟) 𝑟𝑟−𝑟𝑟′
|𝑟𝑟−𝑟𝑟′|3𝑉𝑉2

.  (10.36) 

Therefore,  

𝐹⃗𝐹2 = −𝐹⃗𝐹1,     (10.37) 

which satisfies Newton’s third law.  
Comparing Equation 10.36 to the electrostatic force, they have very similar form, 

   𝐹⃗𝐹2 = 1
4𝜋𝜋𝜀𝜀0

∭ 𝑑𝑑𝑑𝑑∭ 𝑑𝑑𝑑𝑑′𝑉𝑉1
𝜌𝜌1(𝑟𝑟′) ∙ 𝜌𝜌2(𝑟𝑟) 𝑟𝑟−𝑟𝑟′

|𝑟𝑟−𝑟𝑟′|3𝑉𝑉2
.   (10.38) 

 
 The magnetic force between two current carrying loops 

As shown in Figure 10.4, Loop 1 will generate a magnetic field 𝐵𝐵�⃗ 1(𝑟𝑟) on a small 
section on Loop 2, therefore can produce a small force 𝑑𝑑𝐹⃗𝐹2, 

𝑑𝑑𝐹⃗𝐹2 = 𝐼𝐼2�𝑑𝑑𝑙𝑙2 × 𝐵𝐵�⃗ 1(𝑟𝑟)�,             (10.39) 

the total force 𝐹⃗𝐹2 acting on Loop 2 can be written as, 

𝐹⃗𝐹2 = 𝜇𝜇0
4𝜋𝜋
𝐼𝐼2𝐼𝐼1 ∮ ∮ 𝑑𝑑𝑙𝑙2×�𝑑𝑑𝑙𝑙1×(𝑟𝑟−𝑟𝑟′)�

|𝑟𝑟−𝑟𝑟′|2𝐿𝐿2𝐿𝐿1
 .       (10.40) 

Let’s consider, 
𝑑𝑑𝑙𝑙2×�𝑑𝑑𝑙𝑙1×�𝑟𝑟−𝑟𝑟′��

|𝑟𝑟−𝑟𝑟′|2
= −�𝑑𝑑𝑙𝑙2 ∙ 𝑑𝑑𝑙𝑙1�

𝑟𝑟−𝑟𝑟′
|𝑟𝑟−𝑟𝑟′|3

+ 𝑑𝑑𝑙𝑙1 �
𝑑𝑑𝑙𝑙2∙�𝑟𝑟−𝑟𝑟′�

|𝑟𝑟−𝑟𝑟′|3
�,  (10.41) 

The loop integration of the second term in Equation 10.41 is zero since it is an 
expression for a gradient. Therefore, 

𝐹⃗𝐹2 = − 𝜇𝜇0
4𝜋𝜋
𝐼𝐼2𝐼𝐼1 ∮ ∮ 𝑑𝑑𝑙𝑙2 ∙ 𝑑𝑑𝑙𝑙1

𝑟𝑟−𝑟𝑟′
|𝑟𝑟−𝑟𝑟′|3𝐿𝐿2𝐿𝐿1

.   (10.42) 
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Fig. 10.5 The magnetic force on a tiny magnetic dipole. 

 
 The magnetic force on a magnetic dipole 

Since 𝐹⃗𝐹𝐵𝐵 = ∭ 𝐽𝐽(𝑟𝑟′) × 𝐵𝐵�⃗ (𝑟𝑟′)𝑉𝑉 𝑑𝑑𝑑𝑑′ , for a tiny magnetic moment as shown in 
Figure 10.5, the magnetic field 𝐵𝐵�⃗ (𝑟𝑟′) at the vicinity of the magnetic moment can 
be expanded as, 

𝐵𝐵�⃗ (𝑟𝑟′) = 𝐵𝐵�⃗ (𝑟𝑟) + [(𝑟𝑟′ − 𝑟𝑟) ∙ ∇]𝐵𝐵�⃗ (𝑟𝑟) + ⋯.  (10.43) 

Therefore, 

𝐹⃗𝐹𝐵𝐵 = ∭ 𝐽𝐽(𝑟𝑟′) × �𝐵𝐵�⃗ (𝑟𝑟) + [(𝑟𝑟′ − 𝑟𝑟) ∙ ∇]𝐵𝐵�⃗ (𝑟𝑟) + ⋯�𝑉𝑉 𝑑𝑑𝑑𝑑′  

     = ∭ 𝐽𝐽(𝑟𝑟′) × 𝐵𝐵�⃗ (𝑟𝑟)𝑉𝑉 𝑑𝑑𝑉𝑉′ + ∭ 𝐽𝐽(𝑟𝑟′) × [(𝑟𝑟′ − 𝑟𝑟) ∙ ∇]𝐵𝐵�⃗ (𝑟𝑟)𝑉𝑉 𝑑𝑑𝑉𝑉′ + ⋯  

     ≈∭ 𝐽𝐽(𝑟𝑟′) × (𝑟𝑟′ ∙ ∇)𝐵𝐵�⃗ (𝑟𝑟)𝑉𝑉 𝑑𝑑𝑉𝑉′ .   (10.44) 

Since (𝑟𝑟′ ∙ ∇)𝐵𝐵�⃗ (𝑟𝑟) = ∇�𝑟𝑟′ ∙ 𝐵𝐵�⃗ (𝑟𝑟)� − 𝑟𝑟′ × �∇ × 𝐵𝐵�⃗ (𝑟𝑟)�, and the second term on the 
right-hand side is zero. Thus,  

𝐹⃗𝐹𝐵𝐵 = ∭ 𝐽𝐽(𝑟𝑟′) × ∇�𝑟𝑟′ ∙ 𝐵𝐵�⃗ (𝑟𝑟)�𝑉𝑉 𝑑𝑑𝑉𝑉′.           (10.45) 

According to the following identity ∇ × �𝐶𝐶𝐹⃗𝐹� = 𝐶𝐶∇ × 𝐹⃗𝐹 + ∇𝐶𝐶 × 𝐹⃗𝐹 , and let  
𝐶𝐶 = 𝑟𝑟′ ∙ 𝐵𝐵�⃗ (𝑟𝑟), 𝐹⃗𝐹 = 𝐽𝐽(𝑟𝑟′), 

𝐽𝐽(𝑟𝑟′) × ∇�𝑟𝑟′ ∙ 𝐵𝐵�⃗ (𝑟𝑟)� = 𝑟𝑟′ ∙ 𝐵𝐵�⃗ (𝑟𝑟)∇ × 𝐽𝐽(𝑟𝑟′)− ∇ × ��𝑟𝑟′ ∙ 𝐵𝐵�⃗ (𝑟𝑟)�𝐽𝐽(𝑟𝑟′)�.  (10.46) 

The first term on the right-hand side of Equation 10.46 is zero, therefore, 

𝐹⃗𝐹𝐵𝐵 = −∭ ∇ × ��𝑟𝑟′ ∙ 𝐵𝐵�⃗ (𝑟𝑟)�𝐽𝐽(𝑟𝑟′)�𝑉𝑉 𝑑𝑑𝑉𝑉′ = −∇× ∭ �𝑟𝑟′ ∙ 𝐵𝐵�⃗ (𝑟𝑟)�𝐽𝐽(𝑟𝑟′)𝑉𝑉 𝑑𝑑𝑉𝑉′. 
         (10.47) 

Let’s look at the integration term. Similar to the case for multipole expansion, 
Equation 10.12, 
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𝐶𝐶 ∙ �𝐵𝐵�⃗ (𝑟𝑟) × �𝐽𝐽(𝑟𝑟′) × 𝑟𝑟′�� = �𝐶𝐶 ∙ 𝐽𝐽(𝑟𝑟′)��𝐵𝐵�⃗ (𝑟𝑟) ∙ 𝑟𝑟′� − (𝐶𝐶 ∙ 𝑟𝑟′)�𝐵𝐵�⃗ (𝑟𝑟) ∙ 𝐽𝐽(𝑟𝑟′)�,  
         (10.48) 
∇′ ∙ ��𝐶𝐶 ∙ 𝑟𝑟′��𝐵𝐵�⃗ (𝑟𝑟) ∙ 𝑟𝑟′�𝐽𝐽(𝑟𝑟′)� = �𝐶𝐶 ∙ 𝐽𝐽(𝑟𝑟′)��𝐵𝐵�⃗ (𝑟𝑟) ∙ 𝑟𝑟′�+ �𝐶𝐶 ∙ 𝑟𝑟′��𝐵𝐵�⃗ (𝑟𝑟) ∙ 𝐽𝐽(𝑟𝑟′)�  

+�𝐶𝐶 ∙ 𝑟𝑟′��𝐵𝐵�⃗ (𝑟𝑟) ∙ 𝑟𝑟′��∇′ ∙ 𝐽𝐽(𝑟𝑟′)�.     (10.49) 

Adding Equations 10.48 and 10.49 together, one has, 

�𝐶𝐶 ∙ 𝐽𝐽(𝑟𝑟′)��𝐵𝐵�⃗ (𝑟𝑟) ∙ 𝑟𝑟′� =
1
2
𝐶𝐶 ∙ �𝐵𝐵�⃗ (𝑟𝑟) × �𝐽𝐽(𝑟𝑟′) × 𝑟𝑟′�� 

+ 1
2
∇′ ∙ ��𝐶𝐶 ∙ 𝑟𝑟′��𝐵𝐵�⃗ (𝑟𝑟) ∙ 𝑟𝑟′�𝐽𝐽(𝑟𝑟′)�.  (10.50) 

Therefore, 

∭ �𝑟𝑟′ ∙ 𝐵𝐵�⃗ (𝑟𝑟)�𝐽𝐽(𝑟𝑟′)𝑉𝑉 𝑑𝑑𝑉𝑉′ = 𝑚𝑚��⃗ × 𝐵𝐵�⃗ (𝑟𝑟),   (10.51) 

and, 

𝐹⃗𝐹𝐵𝐵 = −∇ × �𝑚𝑚��⃗ × 𝐵𝐵�⃗ (𝑟𝑟)� = (𝑚𝑚��⃗ ∙ ∇)𝐵𝐵�⃗ (𝑟𝑟) −𝑚𝑚��⃗ �∇ ∙ 𝐵𝐵�⃗ (𝑟𝑟)�  

     = ∇�𝑚𝑚��⃗ ∙ 𝐵𝐵�⃗ (𝑟𝑟)�.    (10.52) 

Equation 10.52 has a very similar form comparing to the electrostatic force for an 
electric dipole, 𝐹⃗𝐹𝐸𝐸 = ∇�𝑝𝑝 ∙ 𝐸𝐸�⃗ (𝑟𝑟)� . 
 
 The force between two magnetic dipoles 

For two magnetic dipoles, one will generate a magnetic field at the location of the 
other dipole as shown in Figure 10.6, therefore there will be a magnetic force 
acting on each other. The magnetic field generated by the first magnetic dipole 𝑚𝑚��⃗ 1 
is,   

𝐵𝐵�⃗ 1(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋

3𝑟̂𝑟(𝑟̂𝑟∙𝑚𝑚���⃗ 1)−𝑚𝑚���⃗ 1
𝑟𝑟3

,    (10.53)  

And 
𝐹⃗𝐹2 = (𝑚𝑚��⃗ 2 ∙ ∇)𝐵𝐵�⃗ 1(𝑟𝑟) 

= 3𝜇𝜇0
4𝜋𝜋𝑟𝑟4

[(𝑚𝑚��⃗ 1 ∙ 𝑚𝑚��⃗ 2)𝑟̂𝑟 + (𝑚𝑚��⃗ 1 ∙ 𝑟̂𝑟)𝑚𝑚��⃗ 2 + (𝑚𝑚��⃗ 2 ∙ 𝑟̂𝑟)𝑚𝑚��⃗ 1 − 5(𝑚𝑚��⃗ 1 ∙ 𝑟̂𝑟)(𝑚𝑚��⃗ 2 ∙ 𝑟̂𝑟)𝑟̂𝑟].  (10.54) 

 

 
Fig. 10.6 The magnetic force between two magnetic dipoles. 
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10.3 Magnetic Energy 
For magnetism, since there is no magnetic monopole, the fundamental interaction 
for a magnetic system is between a magnetic field and a magnetic dipole, which is 
described by Equation 10.52. Since 𝐹⃗𝐹𝐵𝐵 = ∇�𝑚𝑚��⃗ ∙ 𝐵𝐵�⃗ (𝑟𝑟)�, according to the force-
potential energy relationship, i.e., 𝐹⃗𝐹 = −∇𝑈𝑈(𝑟𝑟), the magnetic potential energy can 
be defined as,  

𝑈𝑈𝐵𝐵(𝑟𝑟) = −𝑚𝑚��⃗ ∙ 𝐵𝐵�⃗ (𝑟𝑟).    (10.55) 

Such a definition has the same form as for the electric potential energy of an 
electric dipole, 𝑈𝑈𝐸𝐸(𝑟𝑟) = −𝑝𝑝 ∙ 𝐸𝐸�⃗ (𝑟𝑟) . Therefore, the magnetic dipole-dipole 
interaction energy (refer to Figure 10.6) can be written as 

𝑈𝑈𝐵𝐵(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋
�𝑚𝑚���⃗ 1∙𝑚𝑚���⃗ 2−3(𝑟̂𝑟∙𝑚𝑚���⃗ 1)(𝑟̂𝑟∙𝑚𝑚���⃗ 2)

𝑟𝑟3
− 8𝜋𝜋

3
(𝑚𝑚��⃗ 1 ∙ 𝑚𝑚��⃗ 2)𝛿𝛿(𝑟𝑟)�.  (10.56) 

For a collective N magnetic dipole distribution, the total magnetic interaction 
energy of the system can be written as 

𝑈𝑈𝐵𝐵(𝑟𝑟) = −1
2
∑ 𝑚𝑚��⃗ 𝑖𝑖 ∙ 𝐵𝐵�⃗ (𝑟𝑟𝑖𝑖)𝑁𝑁
𝑖𝑖=1 .    (10.57) 

 
 


	Chapter 10
	Magnetic Multipole, Force, and Energy
	10.2 Magnetic Force and Torque
	10.3 Magnetic Energy

