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Chapter 11 
Magnetic Materials 
 
11.1 Magnetization 
 
All materials are made of atoms and molecules, and the electrons of these particles 
shall orbit around their nucleus according to the classic view, which, from Section 
10.1, can be treated as magnetic dipoles. If all the atoms or molecules are in a 
regular lattice and the corresponding electrons all orbiting along the same 
direction, there will be no net magnetic moment existing in the material as shown 
in Figure 11.1A: in any dashed green boxed, effectively all the molecular currents 
are cancelled and there shall be no net magnetic dipole moments in the material. 
However, for a material with defects, such as a vacancy shown in Figure 11.1B, 
as indicated by the blue dashed arrow, there will be a magnetic dipole presented in 
the materials. Thus, for most materials that are not perfect, essentially, due to the 
local none-cancelled molecular current, the material could have a bulk distribution 
of magnetic dipoles. Similar to the definition of polarization, we define 
magnetization 𝑀𝑀��⃗  of a material as, 

 
Fig. 11.1 Molecular current in a material: (A) perfect lattice; (B) a lattice with a 

vacancy; and (C) lattices with two magnetic dipole densities. 
 

𝑀𝑀��⃗ = lim
∆𝑉𝑉→0

1
∆𝑉𝑉
∑ 𝑚𝑚��⃗ 𝑖𝑖𝑖𝑖 ,    (11.1) 

i.e., 𝑀𝑀��⃗  is defined as magnetic dipole density. Let’s assume that the vector function  
𝑀𝑀��⃗ (𝑥𝑥,𝑦𝑦, 𝑧𝑧) is known for a material, thought the formula could be complicated. If 
the magnetic dipoles are uniformly distributed in the materials, there will be not 

A. Perfect lattice                              B. A vacancy in a lattice                         C. Density gradient        
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net local current 𝐽𝐽𝑀𝑀(𝑟𝑟) presented inside the material, as shown in the green dashed 
boxes of Figure 11.1A. However, if there is a defect (Figure 11.1B) or non-
uniform distribution of the magnetic dipoles (Figure 11.1C), at the defect location 
or at the boundary between two different densities, a net current can exist 𝐽𝐽𝑀𝑀. 

 
Fig. 11.2 The induced local current at two adjacent volumes along y-direction. 

Let’s consider the relationship between the net local current 𝐽𝐽𝑀𝑀(𝑟𝑟)  and the 
distribution of 𝑀𝑀��⃗ (𝑥𝑥,𝑦𝑦, 𝑧𝑧). As illustrated in Figure 11, to obtain an 𝐽𝐽𝑀𝑀(𝑟𝑟), the 𝑀𝑀��⃗ (𝑟𝑟) 
shall have a change at 𝑟𝑟 location. Let’s first assume such a change is in y-direction, 
i.e.,  

        𝑀𝑀��⃗ = 𝑀𝑀��⃗ (𝑥𝑥,𝑦𝑦, 𝑧𝑧) + 𝜕𝜕𝑀𝑀��⃗
𝜕𝜕𝜕𝜕
∆𝑦𝑦.   (11.2) 

Consider two small adjacent volumes in y-direction as shown in Figure 12. In the 
y-z plane, there are two loop currents formed due to the local magnetization 
nonuniformity: at the boundary between these two volumes, 𝐼𝐼1 is along the positive 
z-direction while 𝐼𝐼2 points to the negative z-direction. Clear, in this case, only 𝑀𝑀𝑥𝑥 
contributes to these two currents, so that 

        𝑀𝑀𝑥𝑥∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧 = 𝐼𝐼1∆𝑦𝑦∆𝑧𝑧,   (11.3) 

for the left volume. And for the right volume, one has,  

          (𝑀𝑀𝑥𝑥 + 𝜕𝜕𝑀𝑀𝑥𝑥
𝜕𝜕𝜕𝜕

∆𝑦𝑦)∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧 = 𝐼𝐼2∆𝑦𝑦∆𝑧𝑧.  (11.4) 

The net current at the boundary can be written as, 

        𝐼𝐼1 − 𝐼𝐼2 = −𝜕𝜕𝑀𝑀𝑥𝑥
𝜕𝜕𝜕𝜕

∆𝑦𝑦∆𝑥𝑥,    (11.5) 

thus the net local current density along z-direction can be written as, 

         (𝐽𝐽𝑀𝑀)𝑧𝑧 = 𝐼𝐼1−𝐼𝐼2
∆𝑦𝑦∆𝑥𝑥

= −𝜕𝜕𝑀𝑀𝑥𝑥
𝜕𝜕𝜕𝜕

.    (11.6) 

x

y

z
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Similarly, if one considers two adjacent small volumes along the x-direction, 
another contribution to the z-direction current density can be found, 

(𝐽𝐽𝑀𝑀)𝑧𝑧 = 𝜕𝜕𝑀𝑀𝑦𝑦

𝜕𝜕𝜕𝜕
.    (11.7) 

Thus, the total contribution to the z-direction local current density is, 

                     (𝐽𝐽𝑀𝑀)𝑧𝑧 = 𝜕𝜕𝑀𝑀𝑦𝑦

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑀𝑀𝑥𝑥

𝜕𝜕𝜕𝜕
.   (11.8) 

The expression on the right-hand side of Equation 11.8 is the z-component of the 
curl of 𝑀𝑀��⃗ . Similar argument can be used to find (𝐽𝐽𝑀𝑀)𝑥𝑥 and (𝐽𝐽𝑀𝑀)𝑦𝑦, and finally we 
obtain, 

  𝐽𝐽𝑀𝑀 = ∇ × 𝑀𝑀��⃗ .    (11.9) 

The bounded local current is determined by the curl of the magnetization 𝑀𝑀��⃗ . 
 

11.2 The Magnetic Field Produced by Magnetization 
In a small volume of a magnetic material, the total magnetic dipole moments can 
be written as, 

  ∆𝑚𝑚��⃗ = 𝑀𝑀��⃗ ∆𝑉𝑉′.     (11.10) 

Therefore, the vector potential produced by these magnetic dipole moments can be 
written as, 

∆𝐴𝐴 = 𝜇𝜇0
4𝜋𝜋

∆𝑚𝑚���⃗ ×(𝑟𝑟−𝑟𝑟′)
|𝑟𝑟−𝑟𝑟′|3

,   (11.11) 

The overall vector potential 𝐴𝐴 can be expressed as, 

        𝐴𝐴 = 𝜇𝜇0
4𝜋𝜋∭

𝑀𝑀��⃗ ×(𝑟𝑟−𝑟𝑟′)
|𝑟𝑟−𝑟𝑟′|3𝑉𝑉 𝑑𝑑𝑉𝑉′ = 𝜇𝜇0

4𝜋𝜋∭ 𝑀𝑀��⃗ × ∇′ 1
|𝑟𝑟−𝑟𝑟′|𝑉𝑉 𝑑𝑑𝑉𝑉′.  (11.12) 

Using the following identities, 

�
∇ × �𝜑𝜑𝐹⃗𝐹� = (∇𝜑𝜑) × 𝐹⃗𝐹 + 𝜑𝜑∇ × 𝐹⃗𝐹

∭ ∇ × 𝐹⃗𝐹𝑑𝑑𝑉𝑉′ = ∯ 𝑛𝑛� × 𝐹⃗𝐹𝑆𝑆𝑉𝑉 𝑑𝑑𝑑𝑑′
 ,  (11.13) 

We have  

        𝐴𝐴 = 𝜇𝜇0
4𝜋𝜋∭

∇′×𝑀𝑀��⃗
|𝑟𝑟−𝑟𝑟′|𝑉𝑉 𝑑𝑑𝑉𝑉′ + 𝜇𝜇0

4𝜋𝜋∯
𝑀𝑀��⃗ ×𝑛𝑛�

|𝑟𝑟−𝑟𝑟′|𝑆𝑆 𝑑𝑑𝑑𝑑′.  (11.14) 

Since ∇′ × 𝑀𝑀��⃗ = 𝐽𝐽𝑀𝑀(𝑟𝑟′) and 𝑀𝑀��⃗ × 𝑛𝑛� = 𝐾𝐾��⃗𝑀𝑀(𝑟𝑟𝑠𝑠), Equation 11.14 can be rewritten as, 

𝐴𝐴 = 𝜇𝜇0
4𝜋𝜋∭

𝐽𝐽𝑀𝑀(𝑟𝑟′)
|𝑟𝑟−𝑟𝑟′|𝑉𝑉 𝑑𝑑𝑉𝑉′ + 𝜇𝜇0

4𝜋𝜋∯
𝐾𝐾��⃗ 𝑀𝑀(𝑟𝑟𝑠𝑠)
|𝑟𝑟−𝑟𝑟′|𝑆𝑆 𝑑𝑑𝑑𝑑′.  (11.15) 
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If we compare the expression in Equation 11.15 to the expression for electrostatic 
potential, the first term in the right-hand side represents a bulk contribution, and 
the second term is a result from a surface contribution.  
 
The magnetic field generated by this magnetized material can be written as,  

                    𝐵𝐵�⃗ (𝑟𝑟) = ∇ × 𝐴𝐴(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋∭ ∇ × �𝑀𝑀

��⃗ ×(𝑟𝑟−𝑟𝑟′)
|𝑟𝑟−𝑟𝑟′|3

�𝑉𝑉 𝑑𝑑𝑉𝑉′.  (11.16) 

Using the identity, ∇ × �𝐹⃗𝐹 × 𝐺⃗𝐺� = �∇ ∙ 𝐺⃗𝐺�𝐹⃗𝐹 − �∇ ∙ 𝐹⃗𝐹�𝐺⃗𝐺 + �𝐺⃗𝐺 ∙ ∇�𝐹⃗𝐹 − �𝐹⃗𝐹 ∙ ∇�𝐺⃗𝐺 , 
we have, 

∇ × �𝑀𝑀��⃗ × (𝑟𝑟−𝑟𝑟′)
|𝑟𝑟−𝑟𝑟′|3

� = 𝑀𝑀��⃗ ∇ ∙ ��𝑟𝑟−𝑟𝑟
′�

|𝑟𝑟−𝑟𝑟′|3
� − (𝑀𝑀��⃗ ∙ ∇) �𝑟𝑟−𝑟𝑟′�

|𝑟𝑟−𝑟𝑟′|3
. (11.17) 

Here we use the relationship ∇ ∙ 𝑀𝑀��⃗ = 0 inside a bulk magnetic material. Therefore, 
the magnetic field consists of two parts, 𝐵𝐵�⃗ (𝑟𝑟) = 𝐵𝐵�⃗ 𝐼𝐼(𝑟𝑟) + 𝐵𝐵�⃗ 𝐼𝐼𝐼𝐼(𝑟𝑟), with  

      𝐵𝐵�⃗ 𝐼𝐼(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋∭ 𝑀𝑀��⃗ ∇ ∙ ��𝑟𝑟−𝑟𝑟

′�
|𝑟𝑟−𝑟𝑟′|3

�𝑉𝑉 𝑑𝑑𝑉𝑉′,   (11.18)  

    𝐵𝐵�⃗ 𝐼𝐼𝐼𝐼(𝑟𝑟) = − 𝜇𝜇0
4𝜋𝜋∭ (𝑀𝑀��⃗ ∙ ∇) �𝑟𝑟−𝑟𝑟′�

|𝑟𝑟−𝑟𝑟′|3𝑉𝑉 𝑑𝑑𝑉𝑉′.  (11.19) 

For 𝐵𝐵�⃗ 𝐼𝐼(𝑟𝑟), ∇ ∙ ��𝑟𝑟−𝑟𝑟
′�

|𝑟𝑟−𝑟𝑟′|3
� = 4𝜋𝜋𝜋𝜋(𝑟𝑟 − 𝑟𝑟′), thus, 

𝐵𝐵�⃗ 𝐼𝐼(𝑟𝑟) = 𝜇𝜇0𝑀𝑀��⃗ .    (11.20) 

For 𝐵𝐵�⃗ 𝐼𝐼𝐼𝐼(𝑟𝑟), since ∇ �𝑀𝑀��⃗ ∙ (𝑟𝑟−𝑟𝑟′)
|𝑟𝑟−𝑟𝑟′|3

� = �𝑀𝑀��⃗ ∙ ∇� �𝑟𝑟−𝑟𝑟
′�

|𝑟𝑟−𝑟𝑟′|3
+ 𝑀𝑀��⃗ × �∇ × 𝑟𝑟−𝑟𝑟′

|𝑟𝑟−𝑟𝑟′|3
�, the second 

term on the right-hand side is zero, thus, 

     𝐵𝐵�⃗ 𝐼𝐼𝐼𝐼(𝑟𝑟) = −𝜇𝜇0∇
1
4𝜋𝜋∭ 𝑀𝑀��⃗ ∙ (𝑟𝑟−𝑟𝑟′)

|𝑟𝑟−𝑟𝑟′|3𝑉𝑉 𝑑𝑑𝑉𝑉′.  (11.21) 

Therefore, we can define a magnetic scalar potential 𝜑𝜑𝐵𝐵, 

𝜑𝜑𝐵𝐵 = 1
4𝜋𝜋∭ 𝑀𝑀��⃗ ∙ (𝑟𝑟−𝑟𝑟′)

|𝑟𝑟−𝑟𝑟′|3𝑉𝑉 𝑑𝑑𝑉𝑉′,    (11.22) 

And  

𝐵𝐵�⃗ 𝐼𝐼𝐼𝐼(𝑟𝑟) = −𝜇𝜇0∇𝜑𝜑𝐵𝐵.   (11.23) 

Based on Equations 11.20 and 11.23, we have 

       𝐵𝐵�⃗ (𝑟𝑟) = −𝜇𝜇0∇𝜑𝜑𝐵𝐵 + 𝜇𝜇0𝑀𝑀��⃗ .   (11.24) 

 

11.3 Magnetic Scalar Potential 

Since  𝑀𝑀��⃗ ∙ �𝑟𝑟−𝑟𝑟
′�

|𝑟𝑟−𝑟𝑟′|3
= 𝑀𝑀��⃗ ∙ ∇′ 1

|𝑟𝑟−𝑟𝑟′|
= ∇′ ∙ 𝑀𝑀��⃗

|𝑟𝑟−𝑟𝑟′|
− 1

|𝑟𝑟−𝑟𝑟′|
∇′ ∙ 𝑀𝑀��⃗ , thus 
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   𝜑𝜑𝐵𝐵 = 1
4𝜋𝜋∯

𝑀𝑀��⃗ ∙𝑛𝑛�
|𝑟𝑟−𝑟𝑟′|𝑆𝑆 𝑑𝑑𝑑𝑑′ − 1

4𝜋𝜋∭
∇′∙𝑀𝑀��⃗

|𝑟𝑟−𝑟𝑟′|𝑉𝑉 𝑑𝑑𝑑𝑑′,  (11.25) 

So we can define the magnetic charge density, 

    𝜌𝜌𝑀𝑀(𝑟𝑟′) = −∇′ ∙ 𝑀𝑀��⃗ ,   (11.26) 

and surface magnetic charge density, 

𝜎𝜎𝑀𝑀(𝑟𝑟𝑠𝑠) = 𝑀𝑀��⃗ (𝑟𝑟𝑠𝑠) ∙ 𝑛𝑛�,   (11.27) 

By considering both fields, we have, 

𝐵𝐵�⃗ (𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋∭ 𝜌𝜌𝑀𝑀(𝑟𝑟′) 𝑟𝑟−𝑟𝑟′

|𝑟𝑟−𝑟𝑟′|3𝑉𝑉 𝑑𝑑𝑉𝑉′ + 𝜇𝜇0
4𝜋𝜋∯ 𝜎𝜎𝑀𝑀(𝑟𝑟𝑠𝑠) 𝑟𝑟−𝑟𝑟𝑠𝑠

|𝑟𝑟−𝑟𝑟𝑠𝑠|3𝑆𝑆 𝑑𝑑𝑆𝑆′ + 𝜇𝜇0𝑀𝑀��⃗ . (11.28) 

 

11.4 Magnetic Intensity 
If the material also has a current density 𝐽𝐽(𝑟𝑟), then 

   𝐵𝐵�⃗ (𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋∭

𝐽𝐽(𝑟𝑟′)×�𝑟𝑟−𝑟𝑟′�
|𝑟𝑟−𝑟𝑟′|3𝑉𝑉 𝑑𝑑𝑉𝑉′ − 𝜇𝜇0∇𝜑𝜑𝐵𝐵(𝑟𝑟) + 𝜇𝜇0𝑀𝑀��⃗ (𝑟𝑟).  (11.29) 

To make the expression more concise, we can define the magnetic intensity 𝐻𝐻��⃗ (𝑟𝑟), 
with 

   𝐻𝐻��⃗ (𝑟𝑟) = 1
𝜇𝜇0
𝐵𝐵�⃗ (𝑟𝑟) −𝑀𝑀��⃗ (𝑟𝑟),   (11.30) 

so that 

    𝐻𝐻��⃗ (𝑟𝑟) = 1
4𝜋𝜋∭

𝐽𝐽(𝑟𝑟′)×�𝑟𝑟−𝑟𝑟′�
|𝑟𝑟−𝑟𝑟′|3𝑉𝑉 𝑑𝑑𝑉𝑉′ − ∇𝜑𝜑𝐵𝐵(𝑟𝑟).  (11.31) 

Since ∇ ∙ 𝐵𝐵�⃗ (𝑟𝑟) = 0 and ∇ × 𝐵𝐵�⃗ (𝑟𝑟) = 𝜇𝜇0𝐽⃗𝐽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 with 𝐽⃗𝐽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐽⃗𝐽 + 𝐽⃗𝐽𝑀𝑀, i.e.,  

   ∇ × 𝐵𝐵�⃗ (𝑟𝑟) = 𝜇𝜇0(𝐽⃗𝐽 + 𝐽⃗𝐽𝑀𝑀).   (11.32) 

Then,  

∇ × 𝐻𝐻��⃗ (𝑟𝑟) = ∇ × � 1
𝜇𝜇0
𝐵𝐵�⃗ −𝑀𝑀���⃗ � = 𝐽⃗𝐽.   (11.33) 

Only free current density is shown in the relationship. Therefore, 

∬ ∇ × 𝐻𝐻��⃗ (𝑟𝑟) ∙ 𝑛𝑛�𝑑𝑑𝑑𝑑′𝑠𝑠 = ∮ 𝐻𝐻��⃗ (𝑟𝑟) ∙ 𝑑𝑑𝑙𝑙𝐿𝐿 = ∬ 𝐽⃗𝐽𝑆𝑆 ∙ 𝑛𝑛�𝑑𝑑𝑑𝑑′. (11.34) 

Thus, 

         ∮ 𝐻𝐻��⃗ (𝑟𝑟) ∙ 𝑑𝑑𝑙𝑙𝐿𝐿 = ∑𝐼𝐼.    (11.35) 

This is the Ampere’s law.  
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The constitutive relationship, 

     𝑀𝑀���⃗ = 𝜒𝜒𝑀𝑀𝐻𝐻��⃗ .    (11.36) 
𝜒𝜒𝑀𝑀  is called the magnetic susceptibility. When 𝜒𝜒𝑀𝑀 > 0 , the material is called 
paramagnetic material; for 𝜒𝜒𝑀𝑀 < 0, the material is called diamagnetic material. 
This implies that, 

𝐵𝐵�⃗ = 𝜇𝜇𝐻𝐻��⃗ ,   (11.37) 
where 𝜇𝜇 = 𝜇𝜇0(1 + 𝜒𝜒𝑀𝑀). 
 

 
Fig. 11.3 (A) The boundary for magnetic fields and (B) the magnetic flux. 

 

11.5 Boundary Conditions 

Since ∇ ∙ 𝐵𝐵�⃗ = 0 and ∇ ×𝐻𝐻��⃗ = 𝐽⃗𝐽, at the boundary as shown in Figure 11.3,  using 
both the Gaussian and Stokes theorems, one can obtain the following boundary 
conditions, 

        �
𝑛𝑛�2 ∙ �𝐵𝐵�⃗ 2 − 𝐵𝐵�⃗ 1� = 0

𝑛𝑛�2 × �𝐻𝐻��⃗ 2 − 𝐻𝐻��⃗ 1� = 𝐾𝐾���⃗ (𝑟𝑟�⃗ 𝑠𝑠)
,    (10.38) 

here 𝐾𝐾��⃗ (𝑟𝑟𝑠𝑠) is the surface current density at the boundary. Also, according to 
the Gauss’s law of 𝐵𝐵�⃗ , the magnetic flux should be continuum, 

                 ∭ ∇ ∙𝑉𝑉 𝐵𝐵�⃗ 𝑑𝑑𝑉𝑉′ = ∯ 𝐵𝐵�⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′𝑆𝑆   

= ∬ 𝐵𝐵�⃗ ∙ 𝑛𝑛�𝑑𝑑𝑑𝑑′𝑆𝑆2
−∬ 𝐵𝐵�⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′𝑆𝑆1

= Φ(𝑆𝑆2) −Φ(𝑆𝑆1).  (10.39) 

Since 𝐵𝐵�⃗ = 𝜇𝜇0�𝐻𝐻��⃗ + 𝑀𝑀��⃗ �, ∇ ∙ 𝐵𝐵�⃗ = 𝜇𝜇0�∇ ∙ 𝐻𝐻��⃗ + ∇ ∙ 𝑀𝑀��⃗ � , therefore, 

       ∇ ∙ 𝐻𝐻��⃗ = −∇ ∙ 𝑀𝑀��⃗ .    (10.40) 

Thus, 

        ∭ ∇ ∙𝑉𝑉 𝐻𝐻��⃗ 𝑑𝑑𝑉𝑉′ = −∭ ∇ ∙𝑉𝑉 𝑀𝑀��⃗ 𝑑𝑑𝑉𝑉′  
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                        ∬ 𝐻𝐻��⃗ ∙ 𝑛𝑛�𝑑𝑑𝑑𝑑′𝑆𝑆2
−∬ 𝐻𝐻��⃗ ∙ 𝑛𝑛�𝑑𝑑𝑆𝑆′𝑆𝑆1

= ∭ 𝜌𝜌𝑀𝑀(𝑟𝑟�⃗ ′)𝑉𝑉 𝑑𝑑𝑉𝑉′.   (10.41) 

 
Boundary value problem with magnetic material: 
 
Since ∇ ∙ 𝐵𝐵�⃗ = 0  and ∇ ×𝐻𝐻��⃗ = 0 , then 𝐻𝐻��⃗ = −∇𝜑𝜑𝐵𝐵(𝑟𝑟�⃗ ). Consider two types of 
magnetic materials, 

(1) Linear or approximately linear magnetic materials: 𝐵𝐵�⃗ = 𝜇𝜇𝐻𝐻��⃗ . 
(2) A uniformly magnetized piece of material: ∇ ∙ 𝑀𝑀��⃗ = 0. 

In both case, ∇ ∙ 𝐻𝐻��⃗ = 0, so that, 

    ∇2𝜑𝜑𝐵𝐵(𝑟𝑟�⃗ ) = 0.   (11.42) 

Then it becomes the problem to solve for a Laplace equation. 
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