Chapter 9 Magnetostatics

9.1 Basic Concepts

According to the Maxwell's equations,

$$\begin{cases} \nabla \cdot \vec{B} = 0\\ \nabla \times \vec{B} = \mu_0 \vec{J}_{total}, \end{cases}$$
(9.1)

where \vec{J}_{total} represents the total current density of the system, including the free current density \vec{J} and the bounded current density \vec{J}_M , which is the source of the magnetic field. Here

Fig. 9.1 Current and current density.

$$\vec{J} = \frac{l}{A}\hat{n}.$$
(9.2)

or,

$$I = \iint_{S} \vec{J} \cdot d\vec{S}' \tag{9.3}$$

where *I* is the current flow through a cross section area *A* and \hat{n} is the current density direction in the cross-section *S*. For a conductor, \vec{J} follows the Ohms law, $\vec{J} = \sigma \vec{E}$, with σ being the conductivity of the conductor and \vec{E} the electric field inside the conductor. In any isolated material or enclosed object, the total charge of the system shall be conserved, i.e.,

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0. \tag{9.4}$$

In magnetostatics, $\frac{\partial \rho}{\partial t} = 0$, thus,

Fig. 9.2 (a) A moving charge goes through an uniform magnetic field. (b) A magnetic dipole.

$$\nabla \cdot \vec{J} = 0, \tag{9.5}$$

which also implies that $\nabla \cdot \vec{E} = 0$, i.e., inside the conductor, there is no accumulated electric charges.

<u>Definition of the magnetic field</u>: a moving charge in a uniform magnetic field \vec{B} as shown in **Figure 9.2a** will experience a magnetic force \vec{F}_B ,

$$\vec{F}_B = q\vec{v} \times \vec{B}.$$
(9.6)

By measuring both the magnetic force and velocity of the charged particle, in principle one can obtain the magnetic field $|\vec{B}|$, $|\vec{B}| = \frac{|\vec{F}_B|}{q|\vec{v}|\sin\theta}$, where θ is the angle between \vec{v} and \vec{B} .

<u>Definition of a magnetic dipole</u>: A current loop shown in **Figure 9.2b** is defined as a magnetic dipole and is the basic unit for the source of magnetic field. It has a magnetic dipole moment \vec{m} ,

$$\vec{m} = IA\hat{n},\tag{9.7}$$

Here \hat{n} is the surface normal of the current loop and follows the right-hand rule with respect to the current loop direction. When a magnetic dipole is placed in a magnetic field, it will experience a magnetic force \vec{F}_B which will be discussed in Lecture 10 and a magnetic torque \vec{N}_B ,

$$\overline{N}_B = \overline{m} \times \overline{B}.\tag{9.8}$$

9.1.1 Biot-Savart law

The magnetic field is in fact generated by a current carrying wire, and the magnitude is given by the Biot-Savart law. As shown in **Figure 9.3a**, taking a small section $d\vec{l}$ in the current carrying wire, the magnetic field $d\vec{B}$ it generates can be expressed as,

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{l d\vec{l} \times \vec{r}}{|\vec{r}|^3}.$$
(9.9)

Fig. 9.3 (a) The configuration for Biot-Savart law. (b) The magnetic force on a current-carrying wire in a magnetic field.

For a moving charge with velocity \vec{v} , it generates a magnetic field of

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{\nu} \times \vec{r}}{|\vec{r}|^3}.$$
(9.10)

For the entire section of the current carrying wire, the total magnetic field \vec{B} generated at location **P** can be written as,

$$\vec{B} = \frac{\mu_0 I}{4\pi} \int_L \frac{d\vec{l} \times (\vec{r} - \vec{r'})}{|\vec{r} - \vec{r'}|^3}.$$
(9.11)

Note that $I = \iint_{S} \vec{J} \cdot \hat{n} dS'$, where the surface integration is conducted in the cross-section of the wire, and notice that dS'dl = dV', therefore, **Equation 9.11** can be changed to,

$$\vec{B} = \frac{\mu_0}{4\pi} \iiint_V \frac{\vec{J}(\vec{r}\,\prime) \times (\vec{r} - \vec{r}\,\prime)}{|\vec{r} - \vec{r}\,\prime|^3} dV'.$$
(9.12)

For a surface current density $\vec{K}(\vec{r_s})$ where $\vec{r_s}$ is on the surface of concern, one has,

$$\vec{B} = \frac{\mu_0}{4\pi} \iint_S \frac{\vec{J}(\vec{r}_s) \times (\vec{r} - \vec{r}_s)}{|\vec{r} - \vec{r}_s|^3} dS'.$$
(9.13)

Equation 9.12 can be simplified using the following two identities, $\frac{\vec{r}-\vec{r}\prime}{|\vec{r}-\vec{r}\prime|^3} = -\nabla \frac{1}{|\vec{r}-\vec{r}\prime|}$ and $\nabla \times (C\vec{F}) = C\nabla \times \vec{F} - \vec{F} \times \nabla C$, thus

$$\nabla \times \left[\frac{1}{|\vec{r} - \vec{r}'|} \vec{J}(\vec{r}')\right] = \frac{1}{|\vec{r} - \vec{r}'|} \nabla \times \vec{J}(\vec{r}') - \vec{J}(\vec{r}') \times \nabla \frac{1}{|\vec{r} - \vec{r}'|}.$$
 (9.14)

The first term in the right-hand side of Equation 9.14 is zero since $\nabla \times \vec{J}(\vec{r}') = 0$. Therefore,

$$\vec{B} = \frac{\mu_0}{4\pi} \iiint_V \nabla \times \frac{\vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} dV' = \frac{\mu_0}{4\pi} \nabla \times \iiint_V \frac{\vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} dV'.$$
(9.15)

Comparing this expression to the expression for electric field, $\vec{E} = -\frac{1}{4\pi\epsilon_0} \nabla \iiint_V \frac{\rho(\vec{r}')}{|\vec{r}-\vec{r}'|} dV'$, there are two differences: the source in Equation 9.15 is a vector, the current density $\vec{J}(\vec{r}')$ as compared to scalar charge density $\rho(\vec{r}')$; the operation for **Equation 9.15** is the curl, $\nabla \times$; while for \vec{E} , it is a gradient, ∇ .

9.1.2 Magnetic force and torque

The force of a current-carrying wire in a magnetic field \vec{B} as shown in in Figure 9.3b can be expressed as,

$$d\vec{F}_B = Id\vec{l} \times \vec{B}. \tag{9.16}$$

For a finite section of current-carrying wire, the total magnetic force \vec{F}_B can be written as,

$$\vec{F}_B = \int_L I d\vec{l} \times \vec{B}. \tag{9.17}$$

According to the relationship between the current and current density (**Equation** 9.3), Equation 9.17 can be rewritten as,

$$\vec{F}_B = \iiint_V \vec{J}(\vec{r}') \times \vec{B}(\vec{r}') dV', \qquad (9.18)$$

where the volume integration is going through the entire current-carrying wire. And the torque exerted on the wire can be expressed as,

$$\vec{N}_B = \iiint_V \vec{r}' \times \left[\vec{J}(\vec{r}') \times \vec{B}(\vec{r}')\right] dV'.$$
(9.19)

9.1.3 Ampere's law

Applying the identity $\nabla \times (\nabla \times \vec{F}) = \nabla (\nabla \cdot \vec{F}) - \nabla^2 \vec{F}$ and a curl operator on **Equation 9.15**,

$$\nabla \times \vec{B} = \frac{\mu_0}{4\pi} \nabla \times \left[\nabla \times \iiint_V \frac{\vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} dV' \right]$$
$$= \frac{\mu_0}{4\pi} \nabla \left(\iiint_V \vec{J}(\vec{r}') \cdot \nabla \frac{1}{|\vec{r} - \vec{r}'|} dV' \right) - \frac{\mu_0}{4\pi} \iiint_V \vec{J}(\vec{r}') \nabla^2 \frac{1}{|\vec{r} - \vec{r}'|} dV'. \quad (9.20)$$

Since $\nabla \frac{1}{|\vec{r}-\vec{r'}|} = -\nabla' \frac{1}{|\vec{r}-\vec{r'}|}$ and $\nabla^2 \frac{1}{|\vec{r}-\vec{r'}|} = -4\pi\delta(\vec{r}-\vec{r'})$, above expression can be rewritten as,

$$\nabla \times \vec{B} = \frac{\mu_0}{4\pi} \nabla \left(\iiint_V \vec{J}(\vec{r}') \cdot \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} dV' \right) + \mu_0 \vec{J}(\vec{r}).$$
(9.21)

Since $\nabla(\vec{F} \cdot \vec{G}) = (\vec{F} \cdot \nabla)\vec{G} + \vec{F} \times (\nabla \times \vec{G}) + (\vec{G} \cdot \nabla)\vec{F} + \vec{G} \times (\nabla \times \vec{F})$, then

$$\nabla\left[\vec{J}(\vec{r}') \cdot \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3}\right] = \left[\vec{J}(\vec{r}') \cdot \nabla\right] \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} + \vec{J}(\vec{r}') \times \left(\nabla \times \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3}\right)$$

$$+ \left(\frac{\vec{r} - \vec{r} \prime}{|\vec{r} - \vec{r} \prime|^3} \cdot \nabla \right) \vec{J}(\vec{r}^{\,\prime}) + \frac{\vec{r} - \vec{r} \prime}{|\vec{r} - \vec{r} \prime|^3} \times \left[\nabla \times \vec{J}(\vec{r}^{\,\prime}) \right]$$

The 2^{nd} , 3^{rd} , and 4^{th} terms on the right-hand side of above equation equal to zero, thus,

$$\nabla \left(\iiint_V \vec{J}(\vec{r}') \cdot \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} dV' \right) = \iiint_V \left[\vec{J}(\vec{r}') \cdot \nabla \right] \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} dV' = 0.$$

Therefore,

$$\nabla \times \vec{B} = \mu_0 \vec{J}(\vec{r}), \qquad (9.22)$$

or

$$\oint_{L} \vec{B} \cdot d\vec{l} = \mu_0 \iint_{S} \vec{J} \cdot \hat{n} dS' = \mu_0 \sum I.$$
(9.23)

Thus, the Biot-Savart law can derive into Ampere's law.

9.2 Magnetic Potential

9.2.1 Magnetic scalar potential

If $\vec{J}(\vec{r}) = 0$ everwhere, $\nabla \times \vec{B} = 0$. Since $\nabla \cdot \vec{B} = 0$ always holds, then we can write

$$\vec{B}(\vec{r}) = -\nabla \varphi_B(\vec{r}), \tag{9.24}$$

where $\varphi_B(\vec{r})$ is called the magnetic scalar potential and shall satisfy the Laplace equation,

$$\nabla^2 \varphi_B(\vec{r}) = 0. \tag{9.25}$$

Therefore, we can solve similar boundary value problems as we did for electrostatics, with different boundary conditions. More details to use $\varphi_B(\vec{r})$ can be found in Section 11.3.

9.2.1 Magnetic vector potential

When $\vec{J}(\vec{r}) \neq 0$, \vec{B} cannot be described by the scalar potential. However, by looking back into **Equation 9.15**, we can rewrite the expression for the magnetic field \vec{B} as,

$$\vec{B}(\vec{r}) = \nabla \times \vec{A}(\vec{r}), \qquad (9.26)$$

with

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \iiint_V \frac{\vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} dV', \qquad (9.27)$$

so that

$$\nabla \times \vec{B} = \nabla \times \left[\nabla \times \vec{A}(\vec{r})\right] = \mu_0 \vec{J}.$$
(9.28)

Here $\vec{A}(\vec{r})$ is termed as the magnetic vector potential. If $\vec{A}(\vec{r})$ is obtained, then according to Equation 9.26, one can obtain \vec{B} ,

$$\begin{cases} B_x = \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ B_y = \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \\ B_z = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \end{cases}$$
(9.29)

Since \vec{B} is the curl of $\vec{A}(\vec{r})$, mathematically, there could be multiple $\vec{A}(\vec{r})$ that can give the same \vec{B} , because for any arbitrary function $\chi(\vec{r})$, $\nabla \times [\nabla \chi(\vec{r})] = 0$, therefore,

$$\nabla \times \left[\vec{A}(\vec{r}) + \nabla \chi(\vec{r}) \right] = \nabla \times \vec{A}(\vec{r}).$$
(9.30)

i.e., theoretically, any vector $\vec{A}'^{(\vec{r})} = \vec{A}(\vec{r}) + \nabla \chi(\vec{r})$ can be treated as possible magnetic vector potentials. However, physically $\vec{A}(\vec{r})$ cannot be arbitrarily chosen, it shall satisfy certain physics principle. Since $\vec{A}(\vec{r})$ should satisfy **Equation 9.28**, applying the identity $\nabla \times (\nabla \times \vec{F}) = \nabla (\nabla \cdot \vec{F}) - \nabla^2 \vec{F}$, we have

$$\nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A} = \mu_0 \vec{J}. \tag{9.31}$$

Therefore, the simplest constraint to \vec{A} is to make $\nabla \cdot \vec{A} = 0$, which means $\nabla^2 \chi(\vec{r}) = 0$, so that

$$\nabla^2 \vec{A} = -\mu_0 \vec{J}. \tag{9.32}$$

This is the Poisson's equation for the vector potential, i.e.,

$$\nabla \times \vec{A} = \vec{B} .$$

$$\nabla \cdot \vec{A} = 0 .$$
(9.33)

Example 9.1 *Find the vector potential for a uniform magnetic field in z-direction.*

Fig. 9.4 A uniform magnetic field and vector potential.

Discussion: Based on **Equation 9.29**, we shall have

$$\begin{cases} B_x = \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} = 0\\ B_y = \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} = 0\\ B_z = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} = B_0 \end{cases}$$

There are three possible solutions for above equations,

(1)
$$A_y = xB_0, A_x = A_z = 0$$

(2) $A_x = -yB_0, A_y = A_z = 0$
(3) $A_x = -\frac{1}{2}yB_0, A_y = \frac{1}{2}xB_0, A_z = 0$

All 3 solutions satisfy $\nabla \cdot \vec{A} = 0$.

The last solution can be written as,

$$\vec{A} = \frac{1}{2}\vec{B} \times \vec{r}.$$

Taking a loop integration of \vec{A} ,

$$\oint_{L} \vec{A} \cdot d\vec{l} = \iint_{S} \nabla \times \vec{A} \cdot \hat{n} dS' = \iint_{S} \vec{B}_{0} \cdot \hat{n} dS' = \Phi_{B},$$

i.e., it is the magnetic flux through the loop area. Since B_0 is a constant, for a circular loop,

$$\Phi_B = \pi r^2 B_0$$

while for the loop integration of \vec{A} , one has,

$$\oint_{L} \vec{A} \cdot d\vec{l} = 2\pi r A.$$

Therefore,

$$A = \frac{1}{2}Br.$$

Therefore, the solution $\vec{A} = \frac{1}{2}\vec{B} \times \vec{r}$ is more physically sound, see **Figure 9.4**.

Some expressions for $\vec{A}(\vec{r})$:

For a current-carrying wire,

$$\vec{A}(\vec{r}) = \frac{\mu_0 l}{4\pi} \int_L \frac{d\vec{l}}{|\vec{r} - \vec{l}|}.$$
(9.34)

For a surface current density $\vec{K}(\vec{r}_s)$,

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \iint_S \frac{\vec{K}(\vec{r}_S)}{|\vec{r} - \vec{r}_S|} dS'.$$
(9.25)

9-7

According to the Posson's equation for \vec{A} , each component of \vec{A} shall satisfy the Poisson's equation,

$$\nabla^2 A_i = -\mu_0 J_i. \tag{9.26}$$

Example 9.2 Find the $\vec{A}(\vec{r})$ of a straight, infinitely long current-carrying wire with a current *I*.

Fig. 9.5 An straight and infinitely long current-carrying wire.

Discussion: For this problem, $J_z = \frac{I}{\pi a^2}$, $J_x = J_y = 0$, therefore $A_x = A_y = 0$. According to **Equation 9.34**, according to **Figure 9.5**, A_z can be expressed as

$$A_{z}(\rho) = \frac{\mu_{0}I}{4\pi} \int_{-\infty}^{\infty} \frac{dz}{\sqrt{\rho^{2} + z^{2}}} = \lim_{l \to \infty} \frac{\mu_{0}I}{2\pi} ln \frac{\sqrt{\rho^{2} + l^{2}}}{\rho}$$

Neglecting the term of $l \rightarrow \infty$, we obtain,

$$A_z(\rho) = -\frac{\mu_0 I}{2\pi} ln\rho$$

The corresponding magnetic field is

$$\begin{cases} B_x = \frac{\partial A_z}{\partial y} = -\frac{\mu_0 I}{2\pi} \frac{y}{\rho^2} \\ B_y = -\frac{\partial A_z}{\partial x} = \frac{\mu_0 I}{2\pi} \frac{x}{\rho^2} \\ B_z = 0 \end{cases}$$

Fig. 9.6 A circular current ring.

Discussion: We can use two different methods to solve the problem.

Use the scalar potential to solve the problem

Look at any location outside the ring, there is no current source in the space, so that we can use **Equation 9.24** to construct a scalar potential $\varphi_B(\vec{r})$, which satisfies Laplace equation. Take the spherical coordinates and due to the geometric azimuthal symmetry of the entire system, the solution for $\varphi_B(\vec{r})$ can be written as,

$$\varphi_B(r,\theta) = \begin{cases} \sum_{l=1}^{\infty} A_l \left(\frac{r}{R}\right)^l P_l(\cos\theta), & r \le R\\ \sum_{l=1}^{\infty} B_l \left(\frac{R}{r}\right)^{l+1} P_l(\cos\theta), & r > R \end{cases}.$$

When r = R, the magnetic field shall continue, thus

$$\frac{\partial \varphi_B}{\partial r}\Big|_{r^- \to R} = \frac{\partial \varphi_B}{\partial r}\Big|_{r^+ \to R}$$

Thus,

$$\left. \sum_{l=1}^{\infty} A_l \frac{l}{R} \left(\frac{r}{R} \right)^{l-1} P_l(\cos \theta) \right|_{r^- \to R} = -\sum_{l=1}^{\infty} B_l \frac{l+1}{r} \left(\frac{R}{r} \right)^{l+1} P_l(\cos \theta) \Big|_{r^+ \to R}$$

Therefore,

$$A_l \frac{l}{R} = -B_l \frac{l+1}{r}$$
$$\therefore B_l = -\frac{l}{l+1} A_l$$

In addition, the magnetic field along *z*-axis can be calculated *via* the Biot-Savart law,

$$B_{Z}(z) = \frac{\mu_0 I}{2} \frac{R^2}{\left(R^2 + z^2\right)^{3/2}}$$

Thus,

$$\varphi_{z}(z) = -\int_{0}^{z} B_{z}(z) dz = -\frac{\mu_{0}l}{2} \frac{z}{\left(R^{2}+z^{2}\right)^{1/2}}$$

For z < R, according to the generating function of Legendre polynomial,

$$\frac{1}{\sqrt{1-2xt+t^{2}}} = \sum_{l=0}^{\infty} t^{l} P_{l}(x).$$

When x = 0, one has

$$\frac{1}{\sqrt{1+t^2}} = \sum_{l=0}^{\infty} t^l P_l(0).$$

$$\therefore \quad \varphi_Z(z) = -\frac{\mu_0 l}{2} \sum_{l=1}^{\infty} \left(\frac{z}{R}\right)^l P_l(0)$$

Compare to the general solution for z < R,

$$\varphi_B(z,\theta=0) = \sum_{l=1}^{\infty} A_l \left(\frac{z}{R}\right)^l P_l(1).$$

Since $P_l(1) = 1$, thus

$$A_l = -\frac{\mu_0 l}{2} P_{l-1}(0).$$

Therefore,

$$\varphi_B(r,\theta) = \begin{cases} -\frac{\mu_0 l}{2} \sum_{l=1,3,5,\cdots}^{\infty} \left(\frac{r}{R}\right)^l P_{l-1}(0) P_l(\cos\theta), & r \le R \\ \frac{\mu_0 l}{2} \sum_{l=1,3,5,\cdots}^{\infty} \frac{l}{l+1} \left(\frac{R}{r}\right)^{l+1} P_{l-1}(0) P_l(\cos\theta), & r > R \end{cases}$$

The reason for *l* to take the odd integer is because $P_{l-1}(0) = 0$ when *l* is an even integer. The magnetic field can be found by,

$$\vec{B}(r,\theta) = -\nabla \varphi_B(r,\theta) = -\frac{\partial \varphi_B}{\partial r} \hat{r} - \frac{1}{r} \frac{\partial \varphi_B}{\partial \theta} \hat{\theta}.$$

$$\therefore \vec{B}_B(r,\theta) = \begin{cases} -\frac{\mu_0 l}{2} \sum_{l=1,3,5,\cdots}^{\infty} \left(\frac{r}{R}\right)^l P_{l-1}(0) P_l(\cos\theta), & r \le R \\ \frac{\mu_0 l}{2} \sum_{l=1,3,5,\cdots}^{\infty} \frac{l}{l+1} \left(\frac{R}{r}\right)^{l+1} P_{l-1}(0) P_l(\cos\theta), & r > R \end{cases}$$

For $r \gg R$, only take the l = 1 term,

$$\varphi_B(r,\theta) \approx \frac{\mu_0}{2\pi} \frac{\pi R^2 I}{r^2} \cos \theta = \frac{\mu_0}{2\pi} \frac{m}{r^2} \cos \theta.$$

Here $m = \pi R^2 I$ is the magnetic dipole moment of the ring current. The corresponding magnetic field,

$$\vec{B}_B(r,\theta) = \frac{\mu_0}{2\pi} \frac{m}{r^3} \cos \theta \, \hat{r} + \frac{\mu_0}{2\pi} \frac{m}{r^3} \sin \theta \, \hat{\theta}.$$

Use the vector potential to solve the problem

The current density for the current ring can be written as,

$$\vec{J}(\vec{r}') = \frac{I}{R}\delta(r'-R)\delta(\cos\theta')\hat{\phi} = \frac{I}{R}\delta(r'-R)\delta(\cos\theta')[-\sin\phi'\hat{x} + \cos\phi'\hat{y}].$$

We can find the vector potential based on Equation 9.27. Since the current source is only confined in the *x*-*y* plane, $A_z = 0$, thus

$$\begin{cases} A_{\chi} = -\frac{\mu_0 I}{4\pi R} \iiint_V \frac{\delta(r'-R)\delta(\cos\theta')\sin\phi'}{|\vec{r}-\vec{r}'|_{\phi=0}} r^{'2} dr' d\Omega' \\ A_{\chi} = \frac{\mu_0 I}{4\pi R} \iiint_V \frac{\delta(r'-R)\delta(\cos\theta')\cos\phi'}{|\vec{r}-\vec{r}'|_{\phi=0}} r^{'2} dr' d\Omega' \end{cases}$$

Here $d\Omega' = \sin \theta' d\theta' d\phi'$ and

$$|\vec{r} - \vec{r}'|_{\phi=0} = [r^2 + r'^2 - 2rr'(\cos\theta\cos\theta' + \sin\theta\sin\theta'\cos\phi')]^2.$$

The reason we only chose $\phi = 0$ situation is due to the azimuthal symmetry of the system and under $\phi = 0$ condition the math will be simpler.

Since the integrant in the expression for A_x is an odd function with respect to ϕ' , the result of the integration shall be zero. Therefore, only A_y is not vanished. Thus,

$$A_{y}(r,\theta) = \frac{\mu_{0} I R}{4\pi} \int_{0}^{2\pi} \frac{\cos \phi'}{[R^{2} + r^{2} - 2Rr\sin\theta\cos\phi']^{2}} d\phi'.$$

Above integration cannot be further solved, but the denominator can be expanded by spherical harmonics or Legendre polynomials.

The components of magnetic field can be written as

$$\begin{cases} B_r = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_y) \\ B_{\theta} = -\frac{1}{r} \frac{\partial}{\partial r} (r A_y) \\ B_{\phi} = 0 \end{cases}$$

For $R \gg r$, or $R \ll r$, or $\theta \ll 1$, $A_y(r, \theta)$ can be expanded as

$$A_{y}(r,\theta) = \frac{\mu_{0}IR^{2}r\sin\theta}{4(R^{2}+r^{2})^{3/2}} \left[1 + \frac{15R^{2}r^{2}\sin^{2}\theta}{8(R^{2}+r^{2})^{2}} + \cdots\right].$$

The magnetic field components can be written as,

$$B_{r} = \frac{\mu_{0} l R^{2} \cos \theta}{2 (R^{2} + r^{2})^{3/2}} \left[1 + \frac{15 R^{2} r^{2} \sin^{2} \theta}{4 (R^{2} + r^{2})^{2}} + \cdots \right],$$

$$B_{\theta} = -\frac{\mu_{0} l R^{2} \sin \theta}{4 (R^{2} + r^{2})^{\frac{5}{2}}} \left[2 R^{2} - r^{2} + \frac{15 R^{2} r^{2} \sin^{2} \theta (4 R^{2} - 3 r^{2})}{8 (R^{2} + r^{2})^{2}} + \cdots \right].$$

Particularly, for $r \gg R$, we have

$$B_r = \frac{\mu_0}{2\pi} \frac{m}{r^3} \cos \theta,$$
$$B_\theta = \frac{\mu_0}{4\pi} \frac{m}{r^3} \sin \theta.$$

In-class Activity

- 9-1.Show that a magnetic vector potential for two long, straight, parallel wires carrying the same current *I*, in opposite directions is given by $\vec{A} = \frac{\mu_0 I}{2\pi} ln \left(\frac{r_2}{r_1}\right) \hat{n}$, where r_1 and r_2 are the distance from the field point to the wires, and \hat{n} is the unit vector parallel to the wires.
- 9-2. Given the following set of conductors: an infinitely long straight wire surrounded by a thin cylindrical shell of metal (at radius *b*) arranged co-axially with the wire. The two conductors carry equal but opposite currents *I*. Find the magnetic vector potential for the system.
- 9-3. Show that the B-field outside of a long straight wire carrying a current *I* is derivable from the scalar potential $\varphi(\vec{r}) = -\frac{1}{2\pi}\theta$ in cylindrical coordinates.