Chapter 9
Magnetostatics

9.1 Basic Concepts

According to the Maxwell’s equations,
{ V-B=0

e=r ©.1)
VXB = MO]total

where jt ot FEPTESENtS the total current density of the system, including the free

current densityj and the bounded current density jM, which is the source of the
magnetic field. Here

‘ S
Fig. 9.1 Current and current density.

j=1a (9.2)

|~

or,

I=[f, J-dS (9.3)
where / is the current flow through a cross section area 4 and 7 is the current density

direction in the cross-section S. For a conductor, ] follows the Ohms law, J = oE, with

o being the conductivity of the conductor and E the electric field inside the
conductor. In any isolated material or enclosed object, the total charge of the
system shall be conserved, i.e.,

dp 7
Fn +V-J=0. 9.4)
In magnetostatics, —ZZ = 0, thus,
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Fig. 9.2 (a) A moving charge goes through an uniform magnetic field. (b) A
magnetic dipole.

v-j=o, (9.5)

which also implies that V-E=0 , le., inside the conductor, there is no
accumulated electric charges.

Definition of the magnetic field: a moving charge in a uniform magnetic field B as

.
shown in Figure 9.2a will experience a magnetic force Fg,

Fy=qbxB. (9.6)
By measuring both the magnetic force and velocity of the charged particle, in principle one
= = F . -
can obtain the magnetic field |B |, |B | = LI|7|| SBlln 5> where 0 is the angle between ¥ and
B.

Definition of a magnetic dipole: A current loop shown in Figure 9.2b is defined
as a magnetic dipole and is the basic unit for the source of magnetic field. It has a
magnetic dipole moment 71,

m = IAf, (9.7)
Here 71 is the surface normal of the current loop and follows the right-hand rule
with respect to the current loop direction. When a magnetic dipole is placed in a
magnetic field, it will experience a magnetic force F g which will be discussed in
Lecture 10 and a magnetic torque N,

—

Ny =m xB. 9.8)

9.1.1 Biot-Savart law

The magnetic field is in fact generated by a current carrying wire, and the
magnitude is given by the Biot-Savart law. As shown in Figure 9.3a, taking a

small section dlin the current carrying wire, the magnetic field dE it generates
can be expressed as,

Ho 1dIx7
am |73

dB =

(9.9)
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Fig. 9.3 (a) The configuration for Biot-Savart law. (b) The magnetic force on a
current-carrying wire in a magnetic field.

For a moving charge with velocity ¥, it generates a magnetic field of

o
B _ Hg qUXT

B =20 (9.10)

For the entire section of the current carrying wire, the total magnetic field B
generated at location P can be written as,

—

ol ¢ dIX(F-T7)
B =" fL T (9.11)
Note that I = | B J - AdS', where the surface integration is conducted in the cross-

section of the wire, and notice that dS'dl = dV’, therefore, Equation 9.11 can be
changed to,

B =topy, LG gy, 9.12)

7713

. = .
For a surface current density K (7;,) where 7; is on the surface of concern, one has,

_’ ](TS)X(T 7s) l
ff ETETE ds’'. 9.13)
Equation 9.12 can be simplified using the following two identities, Irf :|3 =
—V——andVx (CF) = CV x F — F x VC, thus
|7=71]
Vx| =) = 9.14)

The first term in the right-hand side of Equation 9.14 is zero since V X J(#') =
0. Therefore,

=2, vx i av =2vx [ff, Z2av ©9.15)

|rr| |7F=71|
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Comparing this expression to the expression for electric field, E=

—V|| y Ip @ dV', there are two differences: the source in Equation 9.15 is a

Vector, the current density J (r ) as compared to scalar charge density p(#'); the
operation for Equation 9.15 is the curl, V X; while for E , it is a gradient, V.

9.1.2 Magnetic force and torque

The force of a current-carrying wire in a magnetic field B as shown in in Figure
9.3b can be expressed as,

dFsz = Idl X B. (9.16)

For a finite section of current-carrying wire, the total magnetic force F 5 can be
written as,

Fy =/ IdIxB. 9.17)

According to the relationship between the current and current density (Equation
9.3), Equation 9.17 can be rewritten as,

Fg = [ff, JG") x B(F"av', (9.18)

where the volume integration is going through the entire current-carrying wire.
And the torque exerted on the wire can be expressed as,

Ng = [ff, #x[J(*)x BF)|dv'". (9.19)

9.1.3 Ampere’s law

Applying the identity V X (V x F ) = V(V -F ) —V2F and a curl operator on
Equation 9.15,

VxB = "°Vx[V><ff G0 av']

V7=
Loy (fff, J@)-v

av') =2 fff, JEEtaav. (920

|7— F
Since Ve—— = —V'—— and V2 —— = —4n§ (7 — 7'), above expression can be
Ir—rll aad |F=71]
rewritten as,
vx B =LV ([lf, JG) = dV') + n (). (9.21)

Sincev(ﬁ-§)=(ﬁ-v)G+F><(Vx6)+(G-V)F+5x(vXﬁ),then

] = U6 - V] + 76 % (% )

S =
TT

N

v

S =
TT
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+ (s V)G + s x [V 6]

The 2™, 3% and 4™ terms on the right-hand side of above equation equal to zero,
thus,

v([lf, &) - s av) = fff, G - V] v’ = o,

|7F=71|3 |7F=71|3
Therefore,
VX B = po/ (D), (9.22)

or

§ B-dl=poff, J-AdS' =pe2 1. (9.23)

Thus, the Biot-Savart law can derive into Ampere’s law.

9.2 Magnetic Potential

9.2.1 Magnetic scalar potential

If f (#) = 0 everwhere, V X B=0. Since V-BE=0 always holds, then we can
write
B(F) = ~Vop (), (9.24)
where @g(7) is called the magnetic scalar potential and shall satisfy the Laplace
equation,
VZpgp(#) = 0. (9.25)

Therefore, we can solve similar boundary value problems as we did for
electrostatics, with different boundary conditions. More details to use @ (7) can
be found in Section 11.3.

9.2.1 Magnetic vector potential

When f ™ #0, B cannot be described by the scalar potential. However, by
looking back into Equation 9.15, we can rewrite the expression for the magnetic

field B as,

B(#) = Vx AP, (9.26)
with
A j@n
=2 If, v 9.27)
so that
VxB=Vx[VxA®] = . (9.28)

Here IZ(F) is termed as the magnetic vector potential. If ff(?) is obtained, then

according to Equation 9.26, one can obtain B,
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_ 04, 94,
By = ay 0z
oA, 04,

B, = > " o (9.29)
0A dA
_ 04y 04y
B, = ox dy

Since B is the curl of 4 (7), mathematically, there could be multiple A (7) that can

give the same B, because for any arbitrary function y(#), V x [Vy(#)] = 0,
therefore,

VX [AF) + V(D] = 7V x AP). (9.30)

i.e., theoretically, any vector A'™ = A(#) 4+ Vy(#) can be treated as possible

magnetic vector potentials. However, physically A (#) cannot be arbitrarily

chosen, it shall satisfy certain physics principle. Since E(F) should satisfy
Equation 9.28, applying the identity V X (V X ﬁ) = V(V . ﬁ) - Vzﬁ, we have

V(V-A) — V24 = pyf. (9.31)

Therefore, the simplest constraint to A is to make V-4 = 0, which means
VZy(#) = 0, so that

VA = —u,. (9.32)
This is the Poisson’s equation for the vector potential, i.e.,
{V xA=B (9.33)
V-A=0

Example 9.1 Find the vector potential for a uniform magnetic field in z-direction.

y
B
L] L] ° L] X

Fig. 9.4 A uniform magnetic field and vector potential.

Discussion: Based on Equation 9.29, we shall have
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__ 04, 04y _
By, = dy 9z 0
0A, 6A
By T 9z ox =0
04y 014
B, = ox  ay =By

There are three possible solutions for above equations,

(1) Ay = xBg, Ay = A, = 0
(2 Ay = _yBOaAy =4,=0

1 1
(3) Ax = _EyBo,Ay = ExBo, AZ =0

All 3 solutions satisfy V - A=o0.

The last solution can be written as,

ol

A=

N | R
X

Taking a loop integration of A,
§ A-di=[[, VxA-fdS = [[, By-fdS = dp,
i.e., it is the magnetic flux through the loop area. Since By is a constant, for a
circular loop,
&g = nr?B,,
while for the loop integration of A, one has,

-

$ A-dl = 2mrA.

Therefore,
A=1Br.
2
Therefore, the solution A= %ﬁ is more physically sound, see Figure 9.4.
Some expressions for A (7):
For a current-carrying wire,
ol dl
A = =, = (9.34)
For a surface current density K ),
K(r ’
Aw =L, |r(r)| ds’. (9.25)
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According to the Posson’s equation for A, each component of A shall satisfy the
Poisson’s equation,

VZA; = —uo)i. (9:26)

Example 9.2 Find the A () of a straight, infinitely long current-carrying wire with a current I.

z

—

1

Fig. 9.5 An straight and infinitely long current-carrying wire.

Discussion: For this problem, J, = #, Jx =]y =0, therefore A, = A, =0.

According to Equation 9.34, according to Figure 9.5, A, can be expressed as

wl (©  dz I 242
A,(p) lf = lim=>In P
41T o pZ 45 ZZ l-00 27T p
Neglecting the term of [ — oo, we obtain,
ul
A,(p) = —==Inp
2n
The corresponding magnetic field is
=04 _ _kly
£y = dy — 2m p?
= %4 _klx
By - ox o p?

B,=0
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Example 9.3 Find the magnetic field produced by a circular ring of current.

P
z
(N
4 Y
R
¢ X
I

Fig. 9.6 A circular current ring.
Discussion: We can use two different methods to solve the problem.

» Use the scalar potential to solve the problem

Look at any location outside the ring, there is no current source in the space, so
that we can use Equation 9.24 to construct a scalar potential @z (7), which
satisfies Laplace equation. Take the spherical coordinates and due to the geometric
azimuthal symmetry of the entire system, the solution for @z (#) can be written as,

!
Y14 (E) P;(cos 6), r<R
(pB(rre) = R I+1 .
Y21 B (;) P(cos8), r>R

When r = R, the magnetic field shall continue, thus

99p _ %p
or lr—op ~ or lr+op
Thus,
Y2 A i(L) o P;(cos @) =—-Y2,B z+_1(5)l+1 P;(cos @)
=141\ 3 1 n =151 \7 1 .
Therefore,
p L 3 [+1
Ip = ll -
So Bl = —mAl
In addition, the magnetic field along z-axis can be calculated via the Biot-Savart
law,
_ bl R
B,(z) = 2 )"
Thus,

0,(2) = — [ B,(2)dz = — £ —~

2 (R2+Zz)1/2
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For z < R, according to the generating function of Legendre polynomial,
1

Nrrevcha T2 t'Pi(x).

When x = 0, one has

== I t'P(0).

0.2 = =252, (2) PO

2

Compare to the general solution for z < R,
l
952,60 = 0) = £2, 4, (%) Pi(D).
Since P;(1) = 1, thus
I
A = _#TOPl—l(O)-

Therefore,

l
I voo
_#7021=1_3_5_... (g) Pl_l(O)Pl(COS 9), r<R

(pB(rr 9) = 1+1 .
I oo | (R
P15 (2)  Pioa(0)Pi(cosB), >R

1 \r
The reason for / to take the odd integer is because P;_;(0) = 0 when [ is an even
integer. The magnetic field can be found by,

B(r,0) = —Vou(r,0) = — 2284 12245

or r 06
l
1 [00]
= —#702121,3,5,... (%) P,_1(0)Pi(cos0), r <R
KX BB(T', 9) = il e l i Lot
721=1,3,5,...m(;) P,_1(0)P;(cosB), r>R

For r » R, only take the | = 1 term,

2
Mo TR g m
Qp7 0) ~ 2——cosO = —2—cos¥b.
B( ’ ) 2m 12 2m 12

Here m = wR?I is the magnetic dipole moment of the ring current. The corresponding
magnetic field,

= Ho m W Mgm . oA
Bp(r,0) =2=cos67 +-=L=sind 6.
2w r 2nr

» Use the vector potential to solve the problem
The current density for the current ring can be written as,
J) =28@" = R)5(cos8")p = - 8(r' — R)5(cos 8")[—sin ¢’ £ +

cos ¢'9y].
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We can find the vector potential based on Equation 9.27. Since the current source
is only confined in the x-y plane, 4, = 0, thus

_ ol 5(r'-R)8(cos@')sing’ 2, .
o fff r dr dQ

* |F=7lg=0
_ ol 8(r'-R)8(cos @) cosgp’ 2,
Yy = n fffv T r dr dQ

Here dQ' = sin 8’ d8'd¢’ and
|7 — 7’| p=o = [1? + 1'% — 2r1"(cos 6 cos 0’ + sin O sin B’ cos ¢")]?.

The reason we only chose ¢ = 0 situation is due to the azimuthal symmetry of the
system and under ¢ = 0 condition the math will be simpler.

Since the integrant in the expression for A, is an odd function with respect to ¢,
the result of the integration shall be zero. Therefore, only A,, is not vanished. Thus,

IR cos i 4
Ay(r,0) =22 [ L dg.

[RZ+7r2—-2Rrsin 6 cos ¢']?

Above integration cannot be further solved, but the denominator can be expanded
by spherical harmonics or Legendre polynomials.

The components of magnetic field can be written as

( B, = — neag(smtS'Ay)
By =—12(ra,)
By =0
ForR > r,or R K r,or § K 1, Ay, (r,0) can be expanded as

uOIR rsin @ [ 15R%r% sin% 0 ]
r,0) = 1+
y( ) )3/2 8(R2+r2)2

The magnetic field components can be written as,

_ ;10IR2 cos 6 [ 15R%r% sin% 0 ]
=] T 7 e |,
2(R?+r2) / 4(R*+12)

BB — MOIR sin @ [ZRZ + 15R?*r? sinz 0(4R22—3r2) T ]
4(R2+r2)2 8(R%+12)

Particularly, for > R, we have
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In-class Activity

9-1.Show that a magnetic vector potential for two long, straight, parallel wires
carrying the same current /, in opposite directions is given by A=

I N . . .
l;in In C—Z) 71, where 1y and r, are the distance from the field point to the wires,
1

and 71 is the unit vector parallel to the wires.

9-2.Given the following set of conductors: an infinitely long straight wire
surrounded by a thin cylindrical shell of metal (at radius ) arranged co-axially
with the wire. The two conductors carry equal but opposite currents /. Find the
magnetic vector potential for the system.

9-3.Show that the B-field outside of a long straight wire carrying a current / is

derivable from the scalar potential ¢ (7#) = — % 6 in cylindrical coordinates.
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