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Chapter 5 
Conductors 
 
5.1 General Electrostatic Property of a Conductor 
5.1.1 Charge distribution on a conductor  
Thomson’s Theorem of Electrostatics states that the electrostatic energy of a 
conductor of fixed shape and size is minimized when its charge q distributes itself 
in such a way that the electrostatic potential 𝜑𝜑 remains constant throughout the 
entire object. This uniform potential implies that the electric field 𝐸𝐸�⃗  inside the 
conductor is zero, as linked by the relationship 𝐸𝐸�⃗ = −∇𝜑𝜑 = 0. This fundamental 
property is crucial because it means that there is no electric field acting on the 
charges within the conductor, ensuring that they are in electrostatic equilibrium. 
Consequently, any excess charges in a conductor should be distributed on the 
surface of the conductor. If any excess charge were to reside inside the conductor, 
it would create an electric field that would cause the charges to move until they 
reach the surface.  

When we revisit the boundary conditions governing the electric field at the 
surface of the conductor, we refer to Equation 3.24. Since the electric field 𝐸𝐸�⃗ 𝑖𝑖𝑖𝑖 
inside the conductor is zero, then the electric field 𝐸𝐸�⃗ 𝑜𝑜𝑜𝑜𝑜𝑜  outside the conductor, 
particularly near its surface, may not be zero. The relevant boundary conditions 
can be summarized as, 

�
𝐸𝐸�⃗ 𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝑛𝑛�2 = 𝜎𝜎𝑠𝑠

𝜀𝜀0

𝐸𝐸�⃗ 𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑛𝑛�2 = 0
.         (5.1) 

In this expression, 𝜎𝜎𝑠𝑠 represents the surface charge density of the conductor, and 
𝑛𝑛�2 is the outward normal vector at the surface. The first expression in Equation 
5.1 indicates that the normal component of  𝐸𝐸�⃗ 𝑜𝑜𝑜𝑜𝑜𝑜 just outside the conductor surface 
is not zero and its magnitude is proportional to the surface charge density 𝜎𝜎𝑠𝑠, while 
the second expression signifies that the electric field𝐸𝐸�⃗ 𝑜𝑜𝑜𝑜𝑜𝑜  has no tangential 
component at the surface. Therefore, 𝐸𝐸�⃗ 𝑜𝑜𝑜𝑜𝑜𝑜 can be expressed as, 

𝐸𝐸�⃗ 𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜎𝜎𝑠𝑠
𝜀𝜀0
𝑛𝑛�2 .          (5.2) 
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This result demonstrates that the electric field outside a conductor always points 
outward, normal to the surface, and its magnitude is proportional to the surface 
charge density, as illustrated in Figure 5.1. 

 
Fig. 5.1 Boundary of a conductor. 

 
Fig. 5.2 Two conducting spheres connected by a thin conducting wire. 

Next, we can analyze the surface charge density and the electric field for a 
charged conductor. When a total charge q is placed on a conductor with an arbitrary 
shape, the distribution of charge on its surface is influenced by the local curvature 
𝜅𝜅  of the surface, where 𝜅𝜅 = 1

𝑅𝑅
. A higher curvature results in a greater surface 

charge density 𝜎𝜎.  

To demonstrate this concept, let's consider two conducting spheres with radii 
𝑅𝑅1 and 𝑅𝑅2, which are connected by a thin conducting wire as shown in Figure 5.2. 
When a total charge 𝑞𝑞 is placed on the system, it will redistribute between two 
spheres. If we assume that there is no charge retained in the wire, we can assign 
charges 𝑞𝑞1  and 𝑞𝑞2  to spheres 𝑅𝑅1  and 𝑅𝑅2 , respectively. According to the 
conservation of charge, the total charge satisfies the equation, 

       𝑞𝑞1 + 𝑞𝑞2 = 𝑞𝑞.        (5.3) 

The electric potentials 𝜑𝜑1 and  𝜑𝜑2 on the surfaces of spheres 𝑅𝑅1 and 𝑅𝑅2 are given 
by, 

in out
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     �
𝜑𝜑1 = 1

4𝜋𝜋𝜀𝜀0

𝑞𝑞1
𝑅𝑅1

𝜑𝜑2 = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞2
𝑅𝑅2

.        (5.4) 

Since the two conducting spheres are connected by a thin metal wire, they must be 
at the same electric potential, i.e., 𝜑𝜑1 = 𝜑𝜑2. Thus, we have the relationship, 

           𝑞𝑞1
𝑅𝑅1

= 𝑞𝑞2
𝑅𝑅2

.         (5.5) 

By combining Equations 5.3 and 5.4, we can solve for 𝑞𝑞1 and 𝑞𝑞2  

     �
𝑞𝑞1 = 𝑞𝑞

𝑅𝑅1+𝑅𝑅2
𝑅𝑅1

𝑞𝑞2 = 𝑞𝑞
𝑅𝑅1+𝑅𝑅2

𝑅𝑅2
.        (5.6) 

Therefore, the electric field 𝐸𝐸1  and 𝐸𝐸2  near the surface of each sphere can be 
written as, 

 �
𝐸𝐸1 = 1

4𝜋𝜋𝜀𝜀0

𝑞𝑞1
𝑅𝑅12

= 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞
𝑅𝑅1+𝑅𝑅2

1
𝑅𝑅1

𝐸𝐸2 = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞2
𝑅𝑅22

= 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞
𝑅𝑅1+𝑅𝑅2

1
𝑅𝑅2

.         (5.7) 

This leads us to conclude that, 

 𝐸𝐸1 ∝
1
𝑅𝑅1

= 𝜅𝜅1 and 𝐸𝐸2 ∝
1
𝑅𝑅2

= 𝜅𝜅2.       (5.8) 

Thus, we see that the electric field intensity near the surface of a conductor is 
significantly affected by the curvature of its surface. According to Equation 5.2, 
we know that 𝐸𝐸1 ∝ 𝜎𝜎1 and 𝐸𝐸2 ∝ 𝜎𝜎2. Based on our previous findings, we can relate 
the surface charge densities to curvature, 

        𝜎𝜎1 ∝ 𝜅𝜅1 and 𝜎𝜎2 ∝ 𝜅𝜅2.        (5.9) 

This relationship demonstrates that conductors with sharper curvatures will exhibit 
higher surface charge densities and, consequently, stronger electric fields. 

5.1.2 The electrostatic induction  
Electrostatic induction is a fundamental concept in understanding how conductors 
respond to external electric influences and plays a crucial role in various electrical 
phenomena and device operations. When a conductor is placed in an external 
electric field 𝐸𝐸�⃗ 𝑒𝑒𝑒𝑒𝑜𝑜, the free charges within the conductor experience a redistribution 
and displacement. This process leads to a concentration of charges on the surface 
of the conductor, as illustrated in Figure 5.3. This phenomenon, known as 
electrostatic induction, is pivotal for understanding how conductors shield their 
interiors from external electric influences.  

As a result of the charge redistribution, the electric field inside the conductor 
becomes zero. The surface charges create an opposing or induced electric field 
𝐸𝐸�⃗ 𝑖𝑖𝑖𝑖𝑖𝑖 that cancels out the external field within the conductor, thus establishing a 
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state of electrostatic equilibrium. Based on Figure 5.3, the total electric field 𝐸𝐸�⃗ (𝑟𝑟′) 
at a point 𝑟𝑟′ inside the conductor can be expressed as, 

𝐸𝐸�⃗ (𝑟𝑟′) =  𝐸𝐸�⃗ 𝑒𝑒𝑒𝑒𝑜𝑜(𝑟𝑟′) + 𝐸𝐸�⃗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟′)  

= 𝐸𝐸�⃗ 𝑒𝑒𝑒𝑒𝑜𝑜(𝑟𝑟′) + 1
4𝜋𝜋𝜀𝜀0

∬ 𝜎𝜎(𝑟𝑟𝑠𝑠) 𝑟𝑟′−𝑟𝑟𝑠𝑠
|𝑟𝑟′−𝑟𝑟𝑠𝑠|3𝑆𝑆 𝑑𝑑𝑆𝑆′ = 0,       (5.10) 

  
Fig. 5.3 An induced charge distribution on the surface of a conductor and the 

corresponding induced electric field (blue dashed field lines).  

where 𝑟𝑟𝑠𝑠  indicates the locations of the surface charges on the conductor. This 
equation highlights how the induced electric field arises from the distribution of 
surface charge density 𝜎𝜎 . The induced field 𝐸𝐸�⃗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) outside the conductor but 
produced by the induced surface changes can be expressed as,  

   𝐸𝐸�⃗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

∬ 𝜎𝜎(𝑟𝑟𝑠𝑠) 𝑟𝑟−𝑟𝑟𝑠𝑠
|𝑟𝑟−𝑟𝑟𝑠𝑠|3𝑆𝑆 𝑑𝑑𝑆𝑆′.       (5.11) 

The corresponding induced electric potential 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) can be written as, 

    𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

∬ 𝜎𝜎(𝑟𝑟𝑠𝑠) 1
|𝑟𝑟−𝑟𝑟𝑠𝑠|𝑆𝑆 𝑑𝑑𝑆𝑆′.       (5.12) 

For points far away from the conductor, where |𝑟𝑟 − 𝑟𝑟𝑠𝑠| ≫ 𝑅𝑅  with 𝑅𝑅  being the 
maximum radius of the conductor), Equation 5.12 can be approximated in 
multipole form,  

𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞
|𝑟𝑟−𝑟𝑟𝑠𝑠| + 1

4𝜋𝜋𝜀𝜀0

�⃗�𝑝∙(𝑟𝑟−𝑟𝑟𝑠𝑠)
|𝑟𝑟−𝑟𝑟𝑠𝑠|3 + ⋯      (5.13) 

Here 𝑞𝑞 is the total charge on the conductor’s surface. If the conductor is initially 
neutral, the total induced charge 𝑞𝑞 = 0, leading to, 

𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

�⃗�𝑝∙(𝑟𝑟−𝑟𝑟𝑠𝑠)
|𝑟𝑟−𝑟𝑟𝑠𝑠|3 + ⋯       (5.14) 

x
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Thus, the induced potential consists of contributions from dipoles, quadrupoles, 
and higher-order multipoles that are induced on the conductor by the external 
electric field. The primary contribution typically arises from the induced dipole. 
According to Equation 4.28, the induced dipole moment 𝑝𝑝 can be defined as, 

   𝑝𝑝 = ∬ 𝜎𝜎(𝑟𝑟𝑠𝑠)𝑟𝑟𝑠𝑠𝑆𝑆 𝑑𝑑𝑆𝑆′.        (5.15) 

The induced potential 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) generates an electric field on the surface of the 
conductor, influencing its interactions with surrounding charges and fields.  

In conclusion, electrostatic induction highlights the interplay between conductors 
and external electric fields. According to previous discussions in Sections 5.1.1 
and 5.1.2, the surface charge density on a conductor is influenced by two primary 
factors: the shape of the conductor and the strength of the applied external electric 
field. The shape determines how charges distribute, while the external field dictates 
the magnitude and direction of the induced surface charge density. Understanding 
these relationships is essential for designing and optimizing electrical devices that 
rely on electrostatic principles. 

 

 
Example 5.1 Find the electric potential produced by a conducting sphere of radius R in a 

uniform external electric field 𝐸𝐸�⃗ 0 . (1) Show that the sphere acquires a dipole 
moment, 𝑝𝑝 = 𝛼𝛼𝜀𝜀0𝐸𝐸�⃗ 0  where 𝛼𝛼 = 4𝜋𝜋𝑅𝑅3(𝛼𝛼 is called the polarizability). (2) Find the 
induced surface charge distribution. 

Discussion: The system is shown in Figure 5.4. The applied external field can be 
written as 

𝐸𝐸�⃗ 𝑒𝑒𝑒𝑒𝑜𝑜 = 𝐸𝐸0�̂�𝑧. 

Inside the conductor, there is an induced electric field that is opposite to the 
external field, 

𝐸𝐸�⃗ 𝑖𝑖𝑖𝑖𝑖𝑖 = −𝐸𝐸0�̂�𝑧. 

 
Fig. 5.4 An uniform electric field applied on a conductive sphere. 
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Outside the conductor, the induced electric field can be treated as a dipole field as 
shown by Equation 5.12. Thus, from the inside sphere, we have 

𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟− → 𝑅𝑅,𝜃𝜃) = 𝐸𝐸0𝑧𝑧 = 𝐸𝐸0𝑅𝑅 cos𝜃𝜃. 

While at the outside sphere, the potential can be written as 

𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟+ → 𝑅𝑅,𝜃𝜃) = 𝐵𝐵
𝑅𝑅2 cos𝜃𝜃 = 1

4𝜋𝜋𝜀𝜀0

𝑝𝑝��⃗ ∙𝑅𝑅���⃗

𝑅𝑅3 = 1
4𝜋𝜋𝜀𝜀0

𝑝𝑝
𝑅𝑅2 cos𝜃𝜃. 

At the surface of the sphere, 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟− → 𝑅𝑅, 𝜃𝜃) = 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟+ → 𝑅𝑅, 𝜃𝜃), i.e., 

𝐸𝐸0𝑅𝑅 cos𝜃𝜃 = 1
4𝜋𝜋𝜀𝜀0

𝑝𝑝
𝑅𝑅2

cos𝜃𝜃. 

Therefore, 

𝑝𝑝 = 4𝜋𝜋𝜀𝜀0𝑅𝑅3𝐸𝐸0. 

According to the definition of polarizability, 𝑝𝑝 = 𝛼𝛼𝜀𝜀0𝐸𝐸�⃗ 0, we get 

𝛼𝛼 = 4𝜋𝜋𝜀𝜀0𝑅𝑅3. 

The total electric potential outside the conducting sphere can be written as 
(superposition of the potential generated by the uniform field and the field induced 
by the dipole on the conductor), 

𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟) = −𝐸𝐸0𝑟𝑟 cos𝜃𝜃 + 𝑅𝑅3𝐸𝐸0
𝑟𝑟2

cos𝜃𝜃. 

According to Equation 5.2,  

𝜎𝜎𝑠𝑠 = 𝜀𝜀0𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟 = 𝑅𝑅) = −𝜀𝜀0
𝜕𝜕𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑟𝑟

�
𝑟𝑟=𝑅𝑅

= 3𝜀𝜀0𝐸𝐸0 cos𝜃𝜃. 

Some interesting problems to think about:  

 Consider the following surface change distribution of a charged conductor: 
(1) A conducting sphere 
(2) A conducting spheroid 
(3) A conducting disk 

 Considering the following induced charge distributions: 
(1) A point charge in a cavity of a conductor 
(2) A point charge outside a conducting sphere 
(3) A dipole inside/outside a spherical conducting shell 

 Induced charge distribution in a charged conductor:  
(1) A charged conducting sphere in a uniform external electric field 
(2) A charged conducting spheroid in a uniform external electric field 

 

5.1.3 The force and torque on a conductor 
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When a conductor is placed in an external field, due to the induced charge 
distribution shown in Figure 5.3, there is a net electrostatic force acting on the 
conductor, 

  �⃗�𝐹 = 1
2∬ 𝜎𝜎(𝑟𝑟𝑠𝑠)𝐸𝐸�⃗ 𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟𝑠𝑠)𝑆𝑆 𝑑𝑑𝑆𝑆′ = 1

2𝜀𝜀0
∬ 𝜎𝜎(𝑟𝑟𝑠𝑠)2𝑆𝑆 𝑛𝑛�𝑑𝑑𝑆𝑆′ .     (5.16) 

Similarly, there is a torque acting on the conductor,  

   𝑁𝑁��⃗ = 1
2𝜀𝜀0

∬ 𝜎𝜎(𝑟𝑟𝑠𝑠)2𝑆𝑆 𝑟𝑟𝑠𝑠 × 𝑛𝑛�𝑑𝑑𝑆𝑆′.       (5.17) 

5.2 Multiple Conductors and Capacitor 

 
Fig. 5.5 An arrangement of N conductors. 

When multiple charged conductors (total number of 𝑁𝑁) are distributed in space, 
the electric potential 𝜑𝜑𝑖𝑖 on the i-th conductor can be written as,  

𝜑𝜑𝑖𝑖(𝑟𝑟𝑖𝑖) = 1
4𝜋𝜋𝜀𝜀0

∑ ∬
𝜎𝜎�𝑟𝑟𝑠𝑠𝑠𝑠�
�𝑟𝑟𝑖𝑖−𝑟𝑟𝑠𝑠𝑠𝑠�𝑆𝑆𝑠𝑠

𝑑𝑑𝑆𝑆𝑗𝑗′𝑁𝑁
𝑗𝑗=1 .       (5.18) 

This equation illustrates how the potential at a conductor depends on the charge 
distributions 𝜎𝜎�𝑟𝑟𝑠𝑠𝑗𝑗� on all other conductors 𝑗𝑗. The potential from each conductor 
contributes to the total potential at the point of interest on the i-th conductor. 
Rearranging the equation allows us to incorporate the total charge 𝑞𝑞𝑗𝑗 on each 
conductor 

𝜑𝜑𝑖𝑖(𝑟𝑟𝑖𝑖) = ∑ 𝑞𝑞𝑗𝑗
1

4𝜋𝜋𝜀𝜀0
∬

𝜎𝜎�𝑟𝑟𝑠𝑠𝑠𝑠�
𝑞𝑞𝑠𝑠�𝑟𝑟𝑖𝑖−𝑟𝑟𝑠𝑠𝑠𝑠�𝑆𝑆𝑠𝑠

𝑑𝑑𝑆𝑆𝑗𝑗′𝑁𝑁
𝑗𝑗=1 = ∑ 𝑞𝑞𝑗𝑗𝑃𝑃𝑖𝑖𝑗𝑗𝑁𝑁

𝑗𝑗=1 ,      (5.19) 

where 𝑃𝑃𝑖𝑖𝑗𝑗 is defined as 

x

y

z

O

1 2

i
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𝑃𝑃𝑖𝑖𝑗𝑗 = 1
4𝜋𝜋𝜀𝜀0

∬
𝜎𝜎�𝑟𝑟𝑠𝑠𝑠𝑠�

𝑞𝑞𝑠𝑠�𝑟𝑟𝑖𝑖−𝑟𝑟𝑠𝑠𝑠𝑠�𝑆𝑆𝑠𝑠
𝑑𝑑𝑆𝑆𝑗𝑗′,      (5.20) 

referred to as the coefficient of potential. Thus, the relationship between the 
potentials of the conductors and their charges can be summarized in matrix form, 

�

𝜑𝜑1
𝜑𝜑2
⋮
𝜑𝜑𝑁𝑁

� = �

𝑃𝑃11 𝑃𝑃12 ⋯ 𝑃𝑃1𝑁𝑁
𝑃𝑃21 𝑃𝑃22 ⋯ 𝑃𝑃2𝑁𝑁
⋮
𝑃𝑃𝑁𝑁1

⋮
𝑃𝑃𝑁𝑁2 ⋯

⋮
𝑃𝑃𝑁𝑁3

��

𝑞𝑞1
𝑞𝑞2
⋮
𝑞𝑞𝑁𝑁

�.      (5.21) 

This matrix equation emphasizes how the potential on each conductor is influenced 
by the charge distributions on all other conductors. The physical interpretation of 
𝑃𝑃𝑖𝑖𝑗𝑗  is that if a unit charge (1 C) is placed on the j-th conductor, the resulting 
potential difference between the i-th and j-th conductors will be equal to 𝑃𝑃𝑖𝑖𝑗𝑗. Due 
to the reciprocal nature of electrostatics, we expect 

        𝑃𝑃𝑖𝑖𝑗𝑗 = 𝑃𝑃𝑗𝑗𝑖𝑖,       (5.22) 

which indicates that the matrix P is symmetric. The inverse matric, 𝐶𝐶 = 𝑃𝑃−1 , 
called the capacitance matrix, relates the charges and potentials,  

�

𝑞𝑞1
𝑞𝑞2
⋮
𝑞𝑞𝑁𝑁

� = �

𝐶𝐶11 𝐶𝐶12 ⋯ 𝐶𝐶1𝑁𝑁
𝐶𝐶21 𝐶𝐶22 ⋯ 𝐶𝐶2𝑁𝑁
⋮
𝐶𝐶𝑁𝑁1

⋮
𝐶𝐶𝑁𝑁2 ⋯

⋮
𝐶𝐶𝑁𝑁3

��

𝜑𝜑1
𝜑𝜑2
⋮
𝜑𝜑𝑁𝑁

�.      (5.23) 

Here 𝐶𝐶𝑖𝑖𝑗𝑗 represents the coefficient of capacitance. Note that 𝐶𝐶𝑖𝑖𝑗𝑗 = 𝐶𝐶𝑗𝑗𝑖𝑖, 𝐶𝐶𝑖𝑖𝑗𝑗 can be 
negative, and 𝐶𝐶𝑖𝑖𝑖𝑖 is called the self-capacitance of the conductor.  

Self-Capacitance of a Single Conductor 

To understand the self-capacitance of a single conductor, consider the total charge 
𝑞𝑞 on the conductor, which is given by, 

𝑞𝑞 = ∬ 𝜎𝜎(𝑟𝑟𝑠𝑠)𝑆𝑆 𝑑𝑑𝑆𝑆′.      (5.24) 

The potential 𝜑𝜑𝑠𝑠 at the charge center of the conductor can be expressed as, 

𝜑𝜑𝑠𝑠 = 1
4𝜋𝜋𝜀𝜀0

∬ 𝜎𝜎(𝑟𝑟𝑠𝑠)
|𝑟𝑟𝑠𝑠|𝑆𝑆 𝑑𝑑𝑆𝑆′.      (5.25) 

From these, we can derive the self-capacitance 𝐶𝐶𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠, 

𝐶𝐶𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 = 𝑞𝑞
𝜑𝜑𝑠𝑠

= ∬ 𝜎𝜎(𝑟𝑟𝑠𝑠)𝑆𝑆 𝑖𝑖𝑆𝑆′

1
4𝜋𝜋𝜀𝜀0

∬ 𝜎𝜎(𝑟𝑟��⃗ 𝑠𝑠)
|𝑟𝑟��⃗ 𝑠𝑠|𝑆𝑆 𝑖𝑖𝑆𝑆′

.         (5.26) 

Examples of Self-Capacitance 

(1) For a spherical conductor of radius R, 𝐶𝐶𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 = 4𝜋𝜋𝜀𝜀0𝑅𝑅. 
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(2) For Earth, since 𝑅𝑅 → ∞, 𝐶𝐶𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 = ∞, and the effective potential of the earth 
𝜑𝜑𝑒𝑒𝑒𝑒𝑟𝑟𝑜𝑜ℎ is always zero regardless of the amount of charge placed upon it. 
This characteristic allows the Earth to be treated as a stable ground 
reference in electrical systems.  

(3) For a conductor disk of radius 𝑎𝑎, 𝐶𝐶𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 = 8𝜀𝜀0𝑎𝑎. 

Exploring the Capacitance Matrix 

Examining the capacitance matrix further, for the i-th conductor, the surface charge 
density can be described by 

𝜎𝜎𝑖𝑖 = 𝜀𝜀0𝐸𝐸�⃗ ∙ 𝑛𝑛�𝑖𝑖 = −𝜀𝜀0∇𝜙𝜙 ∙ 𝑛𝑛�𝑖𝑖,         (5.27) 

where 𝑛𝑛�𝑖𝑖 is the unit vector normal to the surface  𝑆𝑆𝑖𝑖 and 𝜙𝜙 is the potential near the 
surface 𝑆𝑆𝑖𝑖 and 𝜙𝜙 ≠ 𝜑𝜑𝑖𝑖. Therefore, the total charge 𝑞𝑞𝑖𝑖 can be expressed as, 

𝑞𝑞𝑖𝑖 = ∯ 𝜎𝜎𝑖𝑖𝑑𝑑𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖
= −𝜀𝜀0∯ ∇𝜙𝜙 ∙ 𝑛𝑛�𝑖𝑖𝑑𝑑𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖

.         (5.28) 

Since 𝜙𝜙 is the potential outside the conductors (but near the i-th conductor), it shall 
satisfy the Laplace equation, 

∇2𝜙𝜙 = 0,          (5.29) 

the general solution can be expressed as, 

𝜙𝜙(𝑟𝑟) = 𝜑𝜑∞ + ∑ �𝜑𝜑𝑗𝑗 − 𝜑𝜑∞�𝑁𝑁
𝑗𝑗=1 𝑢𝑢𝑗𝑗(𝑟𝑟) = ∑ 𝜑𝜑𝑗𝑗𝑁𝑁

𝑗𝑗=1 𝑢𝑢𝑗𝑗(𝑟𝑟),      (5.30) 

where 𝑢𝑢𝑗𝑗(𝑟𝑟)  are functions that satisfy the Laplace equation ∇2𝑢𝑢𝑗𝑗 = 0 , with 
𝑢𝑢𝑗𝑗(𝑟𝑟𝑠𝑠𝑖𝑖) = 𝛿𝛿𝑖𝑖𝑗𝑗. Using Gauss’ theorem, we can establish the relationship 

𝑞𝑞𝑖𝑖 = ∑ 𝐶𝐶𝑖𝑖𝑗𝑗𝑁𝑁
𝑗𝑗=1 𝜑𝜑𝑗𝑗,         (5.31) 

with 

     𝐶𝐶𝑖𝑖𝑗𝑗 = −𝜀𝜀0∯ ∇𝑢𝑢𝑗𝑗 ∙ 𝑛𝑛�𝑖𝑖𝑑𝑑𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖
.         (5.32) 

Property of Capacitance Coefficients 

The capacitance coefficients have several important properties, 

⎩
⎨

⎧
𝐶𝐶𝑖𝑖𝑗𝑗 = 𝐶𝐶𝑗𝑗𝑖𝑖
𝐶𝐶𝑖𝑖𝑖𝑖 > 0
𝐶𝐶𝑖𝑖𝑗𝑗 < 0
∑ 𝐶𝐶𝑖𝑖𝑗𝑗𝑗𝑗 ≥ 0

.            (5.33) 

For an enclosed system where no electric field lines extend to infinity (Figure xxx), 
we have, 

   ∑ 𝐶𝐶𝑖𝑖𝑗𝑗𝑗𝑗 = 0.             (5.34) 

Special Case: Two Conductors 
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Considering the case of two conductors, since 𝜑𝜑𝑖𝑖 = ∑ 𝑃𝑃𝑖𝑖𝑗𝑗𝑁𝑁
𝑗𝑗=1 𝑞𝑞𝑗𝑗, we have 

      �𝜑𝜑1 = 𝑃𝑃11𝑞𝑞1 + 𝑃𝑃12𝑞𝑞2
𝜑𝜑2 = 𝑃𝑃21𝑞𝑞1 + 𝑃𝑃22𝑞𝑞2

.         (5.36) 

If we set 𝑞𝑞1 = −𝑞𝑞2 = 𝑞𝑞 (a normal capacitor configuration), the potentials simplify 
to 

�𝜑𝜑1 = (𝑃𝑃11 − 𝑃𝑃12)𝑞𝑞
𝜑𝜑2 = (𝑃𝑃21 − 𝑃𝑃22)𝑞𝑞.         (5.37) 

The potential difference between the two conductors is given by 

  ∆𝜑𝜑 = 𝜑𝜑1 − 𝜑𝜑2 = [(𝑃𝑃11 − 𝑃𝑃12) − (𝑃𝑃21 − 𝑃𝑃22)]𝑞𝑞 = (𝑃𝑃11 + 𝑃𝑃22 − 2𝑃𝑃12)𝑞𝑞.  (5.38) 

Thus, the capacitance 𝐶𝐶 of the two-conductor capacitor can be expressed as, 

𝐶𝐶 = 𝑞𝑞
∆𝜑𝜑

= 1
𝑃𝑃11+𝑃𝑃22−2𝑃𝑃12

.         (5.39) 

Since 𝑃𝑃 = 𝐶𝐶−1 = �𝐶𝐶11 𝐶𝐶12
𝐶𝐶12 𝐶𝐶22

�
−1

= 1
𝐶𝐶11𝐶𝐶22−𝐶𝐶122

� 𝐶𝐶22 −𝐶𝐶12
−𝐶𝐶12 𝐶𝐶11

�, we have 

    𝐶𝐶 = 𝐶𝐶11𝐶𝐶22−𝐶𝐶122

𝐶𝐶11+𝐶𝐶22+2𝐶𝐶12
        (5.40) 

If 𝐶𝐶12 ≪ 𝐶𝐶11 and 𝐶𝐶22 , then 

      1
𝐶𝐶

= 1
𝐶𝐶11

+ 1
𝐶𝐶22

.         (5.41) 

This implies that the capacitance of the two conductors can be approximated as the 
sum of their self-capacitances in series. 

Core-Shell Structures 

In configurations like parallel plate capacitors, spherical shells, and cylindrical 
shells, since ∑ 𝐶𝐶𝑖𝑖𝑗𝑗𝑗𝑗 = 0, we find 

𝐶𝐶12 = 𝐶𝐶21 = −𝐶𝐶11 = −𝐶𝐶22        (5.42) 

In this case, there is only one independent coefficient, which we can denote as 𝐶𝐶11. 
Therefore, 

�
𝑞𝑞1 = 𝐶𝐶11(𝜑𝜑1 − 𝜑𝜑2)

𝑞𝑞2 = −𝐶𝐶11(𝜑𝜑1 − 𝜑𝜑2) = −𝑞𝑞1
.        (5.43) 

The capacitance can then be expressed as, 

𝐶𝐶 =

⎩
⎪
⎨

⎪
⎧ 𝜀𝜀0

𝐴𝐴
𝑖𝑖

,   𝑓𝑓𝑓𝑓𝑟𝑟 𝑝𝑝𝑎𝑎𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝
4𝜋𝜋𝜀𝜀0𝑒𝑒𝑎𝑎
𝑎𝑎−𝑒𝑒

, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑝𝑝ℎ𝑝𝑝𝑟𝑟𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝 𝑒𝑒𝑓𝑓𝑟𝑟𝑝𝑝 − 𝑑𝑑ℎ𝑝𝑝𝑝𝑝𝑝𝑝
2𝜋𝜋𝜀𝜀0𝐿𝐿

ln (𝑏𝑏𝑎𝑎)
, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑣𝑣𝑣𝑣𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑𝑟𝑟𝑒𝑒𝑒𝑒𝑎𝑎𝑝𝑝 𝑒𝑒𝑓𝑓 − 𝑎𝑎𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝 𝑒𝑒𝑎𝑎𝑐𝑐𝑝𝑝𝑝𝑝

.     (5.44) 
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Example 5.2 Find the capacitance of the two identical conducting spheres as shown in Fig. 5.6. 

 

For two identical conducting spheres with radius R, the coefficients of potential 
are given by 

 
Fig. 5.6 Capacitance between two identical spheres. 

𝑃𝑃11 = 𝑃𝑃22 = 1
4𝜋𝜋𝜀𝜀0𝑅𝑅

         

The potential of Sphere 1 generated by charge q2 at Sphere 2 is 

    𝜑𝜑12 = 𝑞𝑞2
4𝜋𝜋𝜀𝜀0𝑖𝑖

,         

leading to,  

    𝑃𝑃12 = 1
4𝜋𝜋𝜀𝜀0𝑖𝑖

.        

According to Equation 5.39, 

𝐶𝐶 =
1

𝑃𝑃11 + 𝑃𝑃22 − 2𝑃𝑃12
=

1
2

4𝜋𝜋𝜀𝜀0𝑅𝑅
− 2

4𝜋𝜋𝜀𝜀0𝑑𝑑
= 2𝜋𝜋𝜀𝜀0

𝑑𝑑𝑅𝑅
𝑑𝑑 − 𝑅𝑅

 

If 𝑑𝑑 ≫ 𝑅𝑅, it is expected that 𝑃𝑃12 ≪ 𝑃𝑃11 and 𝑃𝑃22. Therefore, the capacitance can be 
calculated as, 

      𝐶𝐶 ≈ 1
𝑃𝑃11+𝑃𝑃22

= 1
1

4𝜋𝜋𝜀𝜀0𝑅𝑅
+ 1
4𝜋𝜋𝜀𝜀0𝑅𝑅

= 2𝜋𝜋𝜀𝜀0𝑅𝑅.          

 

This analysis provides a comprehensive view of multiple conductors and their 
capacitance properties, emphasizing the intricate relationships between charge, 
potential, and geometry in electrostatics. 

Equivalent Circuit Approximation for Capacitors: When multiple conductors 
are placed close to each other, the concept of equivalent circuits can be employed 
to describe their electrical behavior, including capacitance. The arrangement of 
conductors and their interactions can be modeled by an equivalent circuit that 
simplifies the complex system into a more manageable form. For capacitive 

R R
d
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interactions between closely spaced conductors, as shown in Figure 5.7, the 
equivalent circuit may involve a network of capacitances representing the 
interactions between each pair of conductors. The total capacitance of the system 
is a combination of these individual capacitances, which can be calculated using 
series and parallel combinations depending on their configuration. It’s important 
to note that the accuracy of such equivalent circuit models depends on the 
geometry, arrangement, and nature of the conductors. For more complex 
situations, numerical methods or simulations may be necessary to obtain precise 
results. As shown in the figure below, for multiple conductors arranged closely 
together, they can be approximated by an equivalent circuit of a capacitor network, 
where each capacitor in the network reflects the coupling effects between the 
conductors, allowing for an effective analysis of the overall capacitance and its 
implications in circuit design. 

 
Fig. 5.7 Capacitance between two identical spheres. 

 

The total electrostatic energy 𝑈𝑈𝐸𝐸  of a system of conductors can be expressed using 
several formulations. According to Equation 3.13,  

     𝑈𝑈𝐸𝐸 = 1
2∭ 𝜌𝜌(𝑟𝑟)𝜑𝜑(𝑟𝑟)𝑑𝑑𝑑𝑑𝑉𝑉 = 1

2
∑ 𝜑𝜑𝑖𝑖 ∬ 𝜎𝜎𝑖𝑖(𝑟𝑟𝑠𝑠𝑖𝑖)𝑑𝑑𝑆𝑆𝑖𝑖′𝑆𝑆𝑖𝑖
𝑁𝑁
𝑖𝑖=1 = 1

2
∑ 𝜑𝜑𝑖𝑖𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=1 .     (5.45)   

  

Here, 𝑞𝑞𝑖𝑖 represents the total charge on conductor 𝑒𝑒, which can be derived from the 
potential 𝜑𝜑𝑗𝑗 of all conductors through the relationship 𝑞𝑞𝑖𝑖 = ∑ 𝐶𝐶𝑖𝑖𝑗𝑗𝑁𝑁

𝑗𝑗=1 𝜑𝜑𝑗𝑗. Thus 

𝑈𝑈𝐸𝐸 = 1
2
∑ ∑ 𝜑𝜑𝑗𝑗𝐶𝐶𝑖𝑖𝑗𝑗𝑁𝑁

𝑗𝑗=1 𝜑𝜑𝑖𝑖𝑁𝑁
𝑖𝑖=1 .         (5.46) 

Alternatively, we can express the energy in terms of charges and the coefficients 
of potential, 

𝑈𝑈𝐸𝐸 = 1
2
∑ ∑ 𝑞𝑞𝑗𝑗𝑃𝑃𝑖𝑖𝑗𝑗𝑁𝑁

𝑗𝑗=1 𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=1 .         (5.47) 

For a two-conductor system, this energy expression simplifies to, 

   𝑈𝑈𝐸𝐸 = 1
2
𝑞𝑞2(𝑃𝑃11 + 𝑃𝑃22 − 2𝑃𝑃12) = 𝑞𝑞2

2𝐶𝐶
= 1

2
𝐶𝐶(𝜑𝜑1 − 𝜑𝜑2)2     (5.48) 

+
+
+
+
+

++
+ +++ + +

+ + + +

-

-
-

-
-
-

- - - - - - --- --
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In-class Activity 
5-1. Find the electric potential of a charged conductor sphere in a uniform electric 

field. 

 
 

5-2. A point charge Q is located at (-a, 0, 0) inside a spherical shell conductor as 
shown. How to obtain the surface charge density of the inner surface of the 
shell? What is the surface charge density of the outer surface? 

 

5-3. Find self-capacitance of a uniformly charged disc. 
5-4. Find self-capacitance of an isolated conducting disc. 
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