
 
 
 
 
 

Chapter 3 
Electrostatics 
 
3.1 Electrostatic Field and Potential 
According to the Maxwell’s equations, the time invariant 𝐸𝐸�⃗  and 𝐷𝐷��⃗  fields should 
satisfy the following equations, 

� ∇ ∙ 𝐷𝐷
��⃗ = 𝜌𝜌

∇ × 𝐸𝐸�⃗ = 0
. (3.1) 

So both fields are time invariant. According to Coulomb’s law, the electrostatic 
force ∆�⃗�𝐹𝐸𝐸  generated by an external electric field 𝐸𝐸�⃗  on a small volume of charge 
distribution shown in Figure 3.1a can be written as (i.e., the charged object is 
acting as a test object), 

∆�⃗�𝐹𝐸𝐸 = ∆𝑞𝑞𝐸𝐸�⃗ (𝑟𝑟) = 𝜌𝜌2(𝑟𝑟)𝐸𝐸�⃗ (𝑟𝑟)∆𝑉𝑉. (3.2) 

where ∆𝑞𝑞 = 𝜌𝜌2(𝑟𝑟)∆𝑉𝑉 is the charge of the small volume at location 𝑟𝑟, and  𝐸𝐸�⃗ (𝑟𝑟) is 
the external field distribution at 𝑟𝑟. Thus, the total electrostatic force �⃗�𝐹𝐸𝐸 acting on 
the charge distributed object 𝑉𝑉2 is, 

�⃗�𝐹𝐸𝐸 = � 𝐸𝐸�⃗ (𝑟𝑟)
𝑉𝑉2

 𝜌𝜌2(𝑟𝑟)𝑑𝑑𝑉𝑉. (3.3) 

  
Fig. 3.1 (a) A charged object 𝑉𝑉2 in an electric field 𝐸𝐸�⃗  and (b) the electric field 

𝐸𝐸�⃗  generated by a charged object 𝑉𝑉1.  
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And the torque 𝑁𝑁��⃗  acting on the object 𝑉𝑉2 can be written as 

∆𝑁𝑁��⃗ = 𝑟𝑟 × ∆�⃗�𝐹𝐸𝐸, 

and, 

𝑁𝑁��⃗ = � 𝑟𝑟 × 𝐸𝐸�⃗ (𝑟𝑟)
𝑉𝑉2

 𝜌𝜌2(𝑟𝑟)𝑑𝑑𝑉𝑉. (3.4) 

For two-point charges, according to Coulomb’s law, 

�⃗�𝐹𝐸𝐸(𝑟𝑟, 𝑟𝑟′) =
𝑞𝑞1𝑞𝑞2
4𝜋𝜋𝜀𝜀0

𝑟𝑟 − 𝑟𝑟′
|𝑟𝑟 − 𝑟𝑟′|3

. (3.5) 

Where 𝑟𝑟′ is the location of the source charge 𝑞𝑞1 and 𝑟𝑟 is the location of the test 
charge 𝑞𝑞2. The electric field 𝐸𝐸�⃗1 produced by the source charge 𝑞𝑞1 at location 𝑟𝑟 can 
be written as, 

𝐸𝐸�⃗1 =
𝑞𝑞1

4𝜋𝜋𝜀𝜀0
𝑟𝑟 − 𝑟𝑟′

|𝑟𝑟 − 𝑟𝑟′|3
. (3.6) 

For a bulk charge distribution 𝑉𝑉1 as shown in Figure 3.1b, the electric field 𝐸𝐸�⃗  
generated at location 𝑟𝑟 can be expressed as, 

   𝐸𝐸�⃗ (𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

∭ 𝜌𝜌1(𝑟𝑟′) 𝑟𝑟−𝑟𝑟′
|𝑟𝑟−𝑟𝑟′|3

𝑑𝑑𝑉𝑉′𝑉𝑉1
.         (3.7) 

Similarly, if an object only has a surface charge distribution 𝜎𝜎(𝑟𝑟𝑠𝑠) , where 𝑟𝑟𝑠𝑠 
indicate all locations of the surface, the electric field 𝐸𝐸�⃗  generated at location 𝑟𝑟 is, 

       𝐸𝐸�⃗ (𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

∬ 𝜎𝜎(𝑟𝑟𝑠𝑠) 𝑟𝑟−𝑟𝑟𝑠𝑠
|𝑟𝑟−𝑟𝑟𝑠𝑠|3 𝑑𝑑𝑑𝑑′𝑆𝑆 ,        (3.8) 

while a linear charge distribution with a linear charge density 𝜆𝜆(𝑟𝑟𝑙𝑙), the field can 
be expressed as, 

       𝐸𝐸�⃗ (𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

∫ 𝜆𝜆(𝑟𝑟𝑙𝑙)
𝑟𝑟−𝑟𝑟𝑙𝑙

|𝑟𝑟−𝑟𝑟𝑙𝑙|3
𝑑𝑑𝑑𝑑′𝐿𝐿 .        (3.9) 

Therefore, based on Equations 3.3 and 3.7, for two charged objects 𝑉𝑉1 and 𝑉𝑉2, 
since the object 𝑉𝑉1  can generate a field 𝐸𝐸�⃗  at the location of the object 𝑉𝑉2 , the 
electrostatic force �⃗�𝐹1→2 acting on 𝑉𝑉2 can be written as, 

    �⃗�𝐹1→2 = 1
4𝜋𝜋𝜀𝜀0

∭ 𝜌𝜌2(𝑟𝑟)𝑑𝑑𝑉𝑉∭ 𝜌𝜌1(𝑟𝑟′) 𝑟𝑟−𝑟𝑟′
|𝑟𝑟−𝑟𝑟′|3𝑉𝑉1𝑉𝑉2

 𝑑𝑑𝑉𝑉′.      (3.10) 

Since 𝑟𝑟−𝑟𝑟′
|𝑟𝑟−𝑟𝑟′|3

= −∇ 1
|𝑟𝑟−𝑟𝑟′|

, ∇ × 𝐸𝐸�⃗ (𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

∭ 𝜌𝜌(𝑟𝑟′)∇ × � 𝑟𝑟−𝑟𝑟′
|𝑟𝑟−𝑟𝑟′|3

� 𝑑𝑑𝑉𝑉′ = 0𝑉𝑉 , 

mathematically  𝐸𝐸�⃗ (𝑟𝑟)  can be expressed as a gradient of a scalar function. 
Physically, 𝐸𝐸�⃗ (𝑟𝑟) is directly related to the electrostatic potential 𝜑𝜑(𝑟𝑟) generated by 
a source object (or source electric field), 
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𝐸𝐸�⃗ = −∇𝜑𝜑(𝑟𝑟).        (3.11) 

 

 
Fig. 3.2 The interaction of two charged objects 𝑉𝑉1 and 𝑉𝑉2. 

Note that the electric potential 𝜑𝜑(𝑟𝑟) does not have an absolute value, rather a 
reference point 𝑟𝑟0  must be selected, so that 𝜑𝜑(𝑟𝑟0) = 0, and all potential at any 
arbitrary location is a relative value with respect to 𝜑𝜑(𝑟𝑟0). General convention is 
that 𝜑𝜑(𝑟𝑟) = 0 when 𝑟𝑟 → ∞. For a point charge 𝑞𝑞1, the potential is written as, 

     𝜑𝜑(𝑟𝑟) = 𝑞𝑞1
4𝜋𝜋𝜀𝜀0

1
|𝑟𝑟−𝑟𝑟′|

.            (3.12) 

For a bulk charge distribution 𝑉𝑉1, the potential 𝜑𝜑(𝑟𝑟) can be expressed as, 

𝜑𝜑(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

∭ 𝜌𝜌�𝑟𝑟′�
|𝑟𝑟−𝑟𝑟′|

𝑑𝑑𝑉𝑉′𝑉𝑉1
,       (3.13)  

Similar expressions can be obtained for both surface and linear charge distributions 
as 

�
𝜑𝜑(𝑟𝑟) = 1

4𝜋𝜋𝜀𝜀0
∬ 𝜎𝜎(𝑟𝑟𝑠𝑠)

|𝑟𝑟−𝑟𝑟𝑠𝑠|𝑑𝑑𝑑𝑑′𝑆𝑆     for surface charge 

𝜑𝜑(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

∫ 𝜆𝜆(𝑟𝑟𝑙𝑙)
|𝑟𝑟−𝑟𝑟𝑙𝑙|

𝑑𝑑𝑑𝑑′𝐿𝐿        for linear charge    
.     (3.14) 

Combining the definition of 𝜑𝜑(𝑟𝑟) and the Gauss law, we have, 

        ∇2𝜑𝜑(𝑟𝑟) = −𝜌𝜌/𝜀𝜀0.        (3.15) 

x
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z
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This is the Poisson’s equation for electrostatics. When 𝜌𝜌 = 0 , the Poisson’s 
equation reduces to the Laplace equation, 

            ∇2𝜑𝜑(𝑟𝑟) = 0.        (3.16) 

 
Fig. 3.3 (a) A loop integration of 𝐸𝐸�⃗  and (b) a path integration of a charged particle 

moving from Location A to Location B.  

Both Equations 3.16 and 3.15 are the two most important equations for 
electrostatics. In Chapters 7 and 8, we will give detailed discussions on how to 
solve the boundary-value problems for these two equations.  

One important property for electrostatic force is that it is conservative since �⃗�𝐹𝐸𝐸 =
𝑞𝑞𝐸𝐸�⃗  and ∇ × 𝐸𝐸�⃗ = 0, i.e., the static electric field lines do not cross each other. For 
any loop integration of 𝐸𝐸�⃗  as shown in Figure 3.3a, according to Stokes theorem, 

  ∮ 𝐸𝐸�⃗ ∙ 𝑑𝑑𝑑𝑑𝐿𝐿 = ∬ �∇ × 𝐸𝐸�⃗ � ∙ 𝑛𝑛�𝑑𝑑𝑑𝑑′ =𝑆𝑆 0,       (3.17) 

where 𝑛𝑛� is the surface normal of the area in the loop in Figure 3.3a. Thus, the total 
work ∆𝑊𝑊 done by the electrostatic force �⃗�𝐹𝐸𝐸 along the loop in Figure 3.3a can be 
written as, 

  ∆𝑊𝑊 = ∮ �⃗�𝐹𝐸𝐸 ∙ 𝑑𝑑𝑑𝑑𝐿𝐿 = 𝑞𝑞 ∮ 𝐸𝐸�⃗ ∙ 𝑑𝑑𝑑𝑑𝐿𝐿 = 0.       (3.18) 

i.e., ∆𝑊𝑊 = 0 , which is a condition to show that the force �⃗�𝐹𝐸𝐸  is conservative. 
Alternatively as shown in Figure 3.3b, the work done ∆𝑊𝑊 by an electrostatic force  
�⃗�𝐹𝐸𝐸 to move a charged particle from Location A to Location B is,  

∆𝑊𝑊 = ∫ �⃗�𝐹𝐸𝐸 ∙ 𝑑𝑑𝑑𝑑
𝐵𝐵
𝐴𝐴 = ∫ 𝑞𝑞𝐸𝐸�⃗ ∙ 𝑑𝑑𝑑𝑑𝐵𝐵

𝐴𝐴   

             = −∫ 𝑞𝑞∇𝜑𝜑 ∙ 𝑑𝑑𝑑𝑑𝐵𝐵
𝐴𝐴 = −𝑞𝑞(𝜑𝜑𝐵𝐵 − 𝜑𝜑𝐴𝐴).     (3.19)  

Thus, the work ∆𝑊𝑊  only depends on the electric potentials at Location A to 
Location B, not on a specific the path how the particle is moved. Such a fact also 
demonstrates that the force �⃗�𝐹𝐸𝐸  is conservative. Therefore, both Equations 3.18 
and 3.19 illustrate that the electrostatic force is a conservative force.   

(a)                                                            (b)
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3.2 Gauss Law and Boundary Conditions 
For a static electric field 𝐸𝐸�⃗ , the Gauss law can be written as, 

                ∯ 𝐸𝐸�⃗ ∙ 𝑛𝑛�𝑑𝑑𝑑𝑑′ = 𝑞𝑞𝑖𝑖𝑖𝑖
𝜀𝜀0𝑆𝑆 ,       (3.20)  

 
Fig. 3.4 An illustration of the solid angle Ω𝑠𝑠. 

where 𝑞𝑞𝑖𝑖𝑖𝑖 is the total net charges enclosed in the closed surface. It can be easily 
used to find the electric field of symmetrically distributed charged object. In fact, 
the integration in the right-hand side of Equation 3.20 is the total electric flux 
passing through the enclosed surface. However, for any arbitrary shaped curved 
surface S as shown in Figure 3.4, the electric flux generated by a point charge 𝑞𝑞1 
in the origin of the coordinate can be written as 

    Φ𝐸𝐸 = ∬ 𝐸𝐸�⃗ ∙ 𝑛𝑛�𝑑𝑑𝑑𝑑′𝑆𝑆 = 𝑞𝑞1
4𝜋𝜋𝜀𝜀0

∬ �̂�𝑟
𝑟𝑟2
∙ 𝑛𝑛�𝑑𝑑𝑑𝑑′𝑆𝑆 = 𝑞𝑞1

4𝜋𝜋𝜀𝜀0
Ω𝑠𝑠,      (3.21) 

where Ω𝑠𝑠 is the solid angle covered by the area S as shown in Figure 3.4, i.e., 

Ω𝑠𝑠 = ∬ 𝑑𝑑𝑆𝑆′
𝑟𝑟2𝑆𝑆 .        (3.22) 

Since 𝑑𝑑𝑑𝑑′ = �̂�𝑟 ∙ 𝑛𝑛�𝑑𝑑𝑑𝑑′, in the Spherical Coordinates, one has 

𝑑𝑑Ω𝑠𝑠 = �̂�𝑟∙𝑖𝑖�𝑑𝑑𝑆𝑆′
𝑟𝑟2

= sin𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝑑𝑑.         (3.23)  

Based on Gauss’s law and Equation 3.1, if there is a material boundary to split the 
space into two parts as shown in Figure 3.5, we can construct a tiny cylindrical 
Gauss surface across the boundary and apply Equation 3.20 to investigate the 
relationship between 𝐸𝐸�⃗1 and 𝐸𝐸�⃗ 2 near the boundary. Similarly, a tiny rectangular 
loop can be established across the boundary and apply Equation 3.17 for the fields 
𝐸𝐸�⃗1 and 𝐸𝐸�⃗ 2 near the boundary, we have 

      �
�𝐸𝐸�⃗ 2 − 𝐸𝐸�⃗1� ∙ 𝑛𝑛�2 = 𝜎𝜎𝑠𝑠

𝜀𝜀0

�𝐸𝐸�⃗ 2 − 𝐸𝐸�⃗1� × 𝑛𝑛�2 = 0
,           (3.24) 

x

y

z
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where 𝜎𝜎𝑠𝑠 is the surface charge density on the boundary. Equation 3.24 shows that 
the tangential component of the electric field is continuous at the boundary while 
the normal component may not, depending on whether there is any net charge 
distribution on the boundary. These boundary matching conditions can be 
translated to electrostatic potential 𝜑𝜑(𝑟𝑟) near the boundary, with 

 
Fig. 3.5 An illustration of boundary, associated Gauss surface, loop across the 

boundary and electric fields. 
 

�
𝜕𝜕𝜑𝜑2
𝜕𝜕𝑖𝑖

− 𝜕𝜕𝜑𝜑1
𝜕𝜕𝑖𝑖

= 𝜎𝜎
𝜀𝜀0

𝜑𝜑2(𝑟𝑟𝑠𝑠) = 𝜑𝜑1(𝑟𝑟𝑠𝑠)
 ,       (3.25) 

where 𝑟𝑟𝑠𝑠 is the interface location. The bottom expression in Equation 3.25 
demonstrates that the electrostatic potential 𝜑𝜑(𝑟𝑟)  at the boundary shall be 
continuous. 

 

 
Example 3.1 A uniformly charged sphere with a charge density 𝜌𝜌 and a radius of R centered at 

O. A spherical cavity was cut in the sphere with a radius a (a < R) as shown in 
Figure 3.6. (1) Find the electric field at P(x, y, z) location; (2) Find the electric 
static potential at P. 

2

1
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Fig. 3.6 A uniformly charged sphere with a spherical cavity. 

Discussion: This problem can be solved using the superposition of the electric field 
and potential. The cavity system can be treated as two charged objects, one is a 
uniformly charged sphere S1 with a radius of R, located at (0,0,0), and charge 
density of  𝜌𝜌; the other is a uniformly charged sphere S2 with a radius of a, located 
at (𝑏𝑏, 0,0), and charge density of  −𝜌𝜌. The sphere S1 will generate an electric field 
𝐸𝐸�⃗1 at location P outside S1, similarly, the sphere S2 will generate an electric field 
𝐸𝐸�⃗ 2 at location P, so the total electric field 𝐸𝐸�⃗ 𝑃𝑃 at P is, 

𝐸𝐸�⃗ 𝑃𝑃 = 𝐸𝐸�⃗1 + 𝐸𝐸�⃗ 2. 

Since the sphere S1 has a spherical symmetry, we can construct a Gauss sphere 
centered at (0,0,0) and passing P, and apply the Gauss’s law (Equation 3.20) to 
find 𝐸𝐸�⃗1, 

𝐸𝐸�⃗1 = 𝑅𝑅3𝜌𝜌
3𝜀𝜀0

𝑥𝑥𝑥𝑥�+𝑦𝑦𝑦𝑦�+𝑧𝑧�̂�𝑧
(𝑥𝑥2+𝑦𝑦2+𝑧𝑧2)3/2 . 

Similarly for the sphere S2, we can construct a Gauss sphere centered at (𝑏𝑏, 0,0) 
and passing P to obtain 𝐸𝐸�⃗ 2, 

𝐸𝐸�⃗ 2 = −𝑎𝑎3𝜌𝜌
3𝜀𝜀0

(𝑥𝑥−𝑏𝑏)𝑥𝑥�+𝑦𝑦𝑦𝑦�+𝑧𝑧�̂�𝑧
[(𝑥𝑥−𝑏𝑏)2+𝑦𝑦2+𝑧𝑧2]3/2. 

Therefore, 

𝐸𝐸�⃗ 𝑃𝑃 = 𝑅𝑅3𝜌𝜌
3𝜀𝜀0

𝑥𝑥𝑥𝑥�+𝑦𝑦𝑦𝑦�+𝑧𝑧�̂�𝑧
(𝑥𝑥2+𝑦𝑦2+𝑧𝑧2)3/2 −

𝑎𝑎3𝜌𝜌
3𝜀𝜀0

(𝑥𝑥−𝑏𝑏)𝑥𝑥�+𝑦𝑦𝑦𝑦�+𝑧𝑧�̂�𝑧
[(𝑥𝑥−𝑏𝑏)2+𝑦𝑦2+𝑧𝑧2]3/2. 

The electric potential 𝜑𝜑1 generated by S1 at P can be written as,  

𝜑𝜑1 = 𝑅𝑅3𝜌𝜌
3𝜀𝜀0

1
(𝑥𝑥2+𝑦𝑦2+𝑧𝑧2)1/2, 

And 𝜑𝜑2 generated by S2 at P is, 

x

y

z

R

a
O

(x, y, z)

(b, 0, 0)
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𝜑𝜑2 = −𝑎𝑎3𝜌𝜌
3𝜀𝜀0

1
[(𝑥𝑥−𝑏𝑏)2+𝑦𝑦2+𝑧𝑧2]1/2. 

Therefore the total potential 𝜑𝜑𝑃𝑃 at P is 

𝜑𝜑𝑃𝑃 = 𝜑𝜑1 + 𝜑𝜑2 = 𝑅𝑅3𝜌𝜌
3𝜀𝜀0

1
(𝑥𝑥2+𝑦𝑦2+𝑧𝑧2)1/2 −

𝑎𝑎3𝜌𝜌
3𝜀𝜀0

1
[(𝑥𝑥−𝑏𝑏)2+𝑦𝑦2+𝑧𝑧2]1/2. 

 

 
Example 3.2 The charge q is uniformly distributed on a spherical conductor with a radius R. 

(1) Prove that the force felt by a small charged surface  dq on the conductor follows 
𝑑𝑑�⃗�𝐹 = 1

2
𝐸𝐸𝑑𝑑𝑞𝑞𝑛𝑛�, here  𝐸𝐸 = 𝑞𝑞

4𝜋𝜋𝜀𝜀0

1
𝑅𝑅2

, here 𝑛𝑛� is the surface normal of the dq area. (2) 
If the sphere is cut a half, and one still wants to keep these two halves together, 
how much external force one shall apply? 

 
Fig. 3.7 A spherical conductor and a small surface area. 

Discussion: For a metallic sphere, the charge only distributed on the surface of the 
sphere, and the electric field inside the sphere and near the dq surface is zero.  This 
zero field can be viewed as the superposition of the surface charge generated 
electric field 𝐸𝐸�⃗ 𝑖𝑖  pointing into the center of the sphere, and the electric field 𝐸𝐸�⃗ 𝑒𝑒 
generated by the rest of the charged area of the sphere except for dq area as shown 
in Figure 3.7b, i.e.,  

𝐸𝐸�⃗ 𝑖𝑖 + 𝐸𝐸�⃗ 𝑒𝑒 = 0  

Around dq area, construct a tiny cylindrical Gauss surface as shown in Figure 
3.7b, we have  

       𝐸𝐸𝑖𝑖𝑑𝑑𝑑𝑑 + 𝐸𝐸𝑜𝑜𝑑𝑑𝑑𝑑 = 𝜎𝜎𝑑𝑑𝑆𝑆
𝜀𝜀0

 , 

where 𝜎𝜎 = 𝑞𝑞
4𝜋𝜋𝑅𝑅2

. Near the surface, 𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑜𝑜, thus,  

  𝐸𝐸𝑖𝑖 = 𝜎𝜎
2𝜀𝜀0

. 

x

y

z

R
O

dS

dq

x

y

z

R
O

dq
(a)                                                          (b)
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That is, 𝐸𝐸𝑒𝑒 = 𝐸𝐸𝑖𝑖 = 𝜎𝜎
2𝜀𝜀0

, and the field is pointing outward from the sphere surface. 
Thus, the force acting onto this small dq area due to the rest of the charge 
distribution is,  

 𝑑𝑑�⃗�𝐹 = 𝜎𝜎
2𝜀𝜀0

𝑑𝑑𝑞𝑞�̂�𝑟 = 𝑞𝑞
8𝜋𝜋𝑅𝑅2

𝑑𝑑𝑞𝑞�̂�𝑟 = 1
2
𝐸𝐸(𝑅𝑅)𝑑𝑑𝑞𝑞�̂�𝑟, 

where 𝐸𝐸(𝑅𝑅) = 𝑞𝑞
4𝜋𝜋𝑅𝑅2

. 

For the second part of the problem, since we already know the solution of first part 
of the problem, go back to Figure 3.7a, consider the force acting on the top 
hemisphere, only the z-component force will not be canceled due to the azimuthal 
symmetry, since 𝑑𝑑𝑞𝑞 = 𝜎𝜎𝑑𝑑𝑑𝑑 thus, 

  𝐹𝐹 = ∬𝑑𝑑𝐹𝐹 sin𝜃𝜃 sin𝑑𝑑 = 𝜎𝜎2

2𝜀𝜀0
∫ 𝑑𝑑𝑑𝑑2𝜋𝜋
0 ∫ 𝑅𝑅2 sin2 𝜃𝜃 sin𝑑𝑑𝑑𝑑𝜃𝜃𝜋𝜋

0 . 

Therefore, 

𝐹𝐹 = 𝜋𝜋𝜎𝜎2𝑅𝑅2

2𝜀𝜀0
= 𝑞𝑞2

32𝜋𝜋𝜀𝜀0𝑅𝑅2
. 

This is the force to keep the two hemispheres together.  
 
 

3.3 Electrostatic Potential Energy 
According to Figure 3.2, a charge distribution V1 will generate a potential 𝜑𝜑1(𝑟𝑟) 
at a charge distribution V2, and the electrostatic interaction potential energy 𝑈𝑈𝐼𝐼 
between the two objects can be expressed as, 

   𝑈𝑈𝐼𝐼 = 𝑞𝑞𝜑𝜑𝐸𝐸 = ∭ 𝜌𝜌2(𝑟𝑟)𝜑𝜑1(𝑟𝑟)𝑑𝑑𝑉𝑉𝑉𝑉2
.       (3.26) 

Since 𝜑𝜑1(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

∭ 𝜌𝜌1�𝑟𝑟′�
|𝑟𝑟−𝑟𝑟′|

𝑑𝑑𝑉𝑉′𝑉𝑉1
, thus, 

𝑈𝑈𝐼𝐼 = 1
4𝜋𝜋𝜀𝜀0

∭ 𝜌𝜌2(𝑟𝑟)𝑑𝑑𝑉𝑉𝑉𝑉2
∭ 𝜌𝜌1�𝑟𝑟′�

|𝑟𝑟−𝑟𝑟′|
𝑑𝑑𝑉𝑉′𝑉𝑉1

  

      = 1
4𝜋𝜋𝜀𝜀0

∭ 𝑑𝑑𝑉𝑉𝑉𝑉2
∭ 𝜌𝜌1�𝑟𝑟′�𝜌𝜌2(𝑟𝑟)

|𝑟𝑟−𝑟𝑟′|
𝑑𝑑𝑉𝑉′𝑉𝑉1

  

= 1
4𝜋𝜋𝜀𝜀0

∭ 𝜌𝜌1(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉1
∭ 𝜌𝜌2(𝑟𝑟)

|𝑟𝑟−𝑟𝑟′|
𝑑𝑑𝑉𝑉𝑉𝑉2

= ∭ 𝜌𝜌1(𝑟𝑟′)𝜑𝜑2(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉1
, 

that is, 

∭ 𝜌𝜌2(𝑟𝑟)𝜑𝜑1(𝑟𝑟)𝑑𝑑𝑉𝑉𝑉𝑉2
= ∭ 𝜌𝜌1(𝑟𝑟′)𝜑𝜑2(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉1

.         (3.27) 

Equation 3.27 is called the Green’s reciprocity relationship, i.e., the potential 
energy of 𝜌𝜌2(𝑟𝑟) in the field produced by 𝜌𝜌1(𝑟𝑟′) equals to the potential energy of 
𝜌𝜌1(𝑟𝑟′) in the field produced by 𝜌𝜌2(𝑟𝑟). 
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However, the electrostatic total potential energy 𝑈𝑈𝑇𝑇 of the two-object system not 
only include the interaction energy 𝑈𝑈𝐸𝐸 , but also shall include the electrostatic self 
potential energies 𝑈𝑈𝑆𝑆1 and 𝑈𝑈𝑆𝑆2 of V1 and V2, because in order to build a charged 
object, we have to overcome the electrostatic force to do work to bring a unit 
charge into an object. Let’s consider how to calculate the electrostatic self-energy 
𝑈𝑈𝑆𝑆 of an N-charged particle system. 

(1) Bring one particle 𝑞𝑞1 to the space, the work 𝑊𝑊1 done by the electrostatic 
force is 0. 

(2) Bring the 2nd charge 𝑞𝑞2  into the space, the work 𝑊𝑊2  done by the 
electrostatic force is, 

         𝑊𝑊2 = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞1𝑞𝑞2
|𝑟𝑟1−𝑟𝑟2|.       (3.28) 

(3) Bring the 3rd charge 𝑞𝑞3  into the space, the work 𝑊𝑊3  done by the 
electrostatic force is (since there are two charges already in space) 

𝑊𝑊3 = 𝑞𝑞3
4𝜋𝜋𝜀𝜀0

� 𝑞𝑞1
|𝑟𝑟3−𝑟𝑟1| + 𝑞𝑞2

|𝑟𝑟3−𝑟𝑟2|�.       (3.29) 
So the self-energy 𝑈𝑈𝑆𝑆 of the 3-particle system is written as, 

𝑈𝑈𝑆𝑆 = 𝑊𝑊1 + 𝑊𝑊2 + 𝑊𝑊3 = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞1𝑞𝑞2
|𝑟𝑟1−𝑟𝑟2| + 1

4𝜋𝜋𝜀𝜀0

𝑞𝑞2𝑞𝑞3
|𝑟𝑟2−𝑟𝑟3| + 1

4𝜋𝜋𝜀𝜀0

𝑞𝑞3𝑞𝑞1
|𝑟𝑟3−𝑟𝑟1|.     (3.30) 

(4) Bring the 4th charge 𝑞𝑞4 into the space, 𝑈𝑈𝑆𝑆 can be written as 

        𝑈𝑈𝑆𝑆 = ∑ 𝑊𝑊𝑗𝑗
4
𝑗𝑗=1 = 1

4𝜋𝜋𝜀𝜀0
∑ �∑ 𝑞𝑞𝑗𝑗𝑞𝑞𝑘𝑘

�𝑟𝑟𝑗𝑗−𝑟𝑟𝑘𝑘�
4
𝑘𝑘<𝑗𝑗 �4

𝑗𝑗=1 .       (3.31) 

Therefore, the general expression for 𝑈𝑈𝑆𝑆 of an N-particle system can be written as, 

       𝑈𝑈𝑆𝑆 = ∑ 𝑊𝑊𝑗𝑗
𝑁𝑁
𝑗𝑗=1 = 1

4𝜋𝜋𝜀𝜀0
∑ �∑ 𝑞𝑞𝑗𝑗𝑞𝑞𝑘𝑘

�𝑟𝑟𝑗𝑗−𝑟𝑟𝑘𝑘�
𝑁𝑁
𝑘𝑘<𝑗𝑗 �𝑁𝑁

𝑗𝑗=1 ,       (3.32) 

Or  

𝑈𝑈𝑆𝑆 = 1
2

1
4𝜋𝜋𝜀𝜀0

∑ �∑ 𝑞𝑞𝑗𝑗𝑞𝑞𝑘𝑘
�𝑟𝑟𝑗𝑗−𝑟𝑟𝑘𝑘�

𝑁𝑁
𝑘𝑘≠𝑗𝑗 �𝑁𝑁

𝑗𝑗=1 .       (3.33) 

The factor 1
2
 is counting for the repeated permutations. 

According to Equation 3.33, for a continuum charge distribution shown in Figure 
3.8, the electrostatic self-energy 𝑈𝑈𝑆𝑆 can be written as, 

    𝑈𝑈𝑆𝑆 = 1
2∭ 𝜌𝜌(𝑟𝑟)𝜑𝜑(𝑟𝑟)𝑑𝑑𝑉𝑉𝑉𝑉 ,        (3.34) 

where 𝜑𝜑(𝑟𝑟)  is the electrostatic potential generated by the rest of the charge 
distribution of the object.  Since ∇ ∙ 𝐷𝐷��⃗ = 𝜌𝜌(𝑟𝑟), i.e., 𝜌𝜌(𝑟𝑟) = 𝜀𝜀0∇ ∙ 𝐸𝐸�⃗ = −𝜀𝜀0∇2𝜑𝜑(𝑟𝑟) 

inserting this expression to Equation 3.34,  

𝑈𝑈𝑆𝑆 = −𝜀𝜀0
2 ∭ [∇2𝜑𝜑(𝑟𝑟)]𝜑𝜑(𝑟𝑟)𝑑𝑑𝑉𝑉𝑉𝑉 .       (3.35) 
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Fig. 3.8 The configuration to calculate the self-energy 𝑈𝑈𝑆𝑆 of a continuum charge 

distribution.      

Integrating Equation 3.35 by parts, 

𝑈𝑈𝑆𝑆 = 𝜀𝜀0
2 ∭ |∇𝜑𝜑(𝑟𝑟)|2𝑑𝑑𝑉𝑉𝑉𝑉 = 𝜀𝜀0

2 ∭ �𝐸𝐸�⃗ (𝑟𝑟)�
2
𝑑𝑑𝑉𝑉𝑉𝑉 .         (3.36) 

Based on Equation 3.36, we can define an electrostatic energy density 𝑢𝑢𝐸𝐸, 

    𝑢𝑢𝐸𝐸 = 𝜀𝜀0
2
�𝐸𝐸�⃗ (𝑟𝑟)�

2
.       (3.37)  

The integration in Equation 3.36 should go through the entire space of where 𝐸𝐸�⃗ (𝑟𝑟) 
is occupied, which means that it can cover to infinite if the 𝐸𝐸�⃗ (𝑟𝑟) generated by the 
object can extend to infinite. Based on Equations 3.26 and 3.36, the total 
electrostatic energy 𝑈𝑈𝑇𝑇 of two charged distributed objects shown in Figure 3.2 can 
be written into three parts, 

 𝑈𝑈𝑇𝑇 = 𝑈𝑈𝑆𝑆1 + 𝑈𝑈𝑆𝑆2 + 𝑈𝑈𝐼𝐼,        (3.38) 

where  

𝑈𝑈𝐼𝐼 = 1
4𝜋𝜋𝜀𝜀0

∭ 𝑑𝑑𝑉𝑉𝑉𝑉2
∭ 𝜌𝜌1�𝑟𝑟′�𝜌𝜌2(𝑟𝑟)

|𝑟𝑟−𝑟𝑟′|
𝑑𝑑𝑉𝑉′𝑉𝑉1

,       (3.26) 

       𝑈𝑈𝑆𝑆1 = 1
2∭ 𝜌𝜌1(𝑟𝑟′)𝜑𝜑1(𝑟𝑟′)𝑑𝑑𝑉𝑉𝑉𝑉1

,       (3.29)  

       𝑈𝑈𝑆𝑆2 = 1
2∭ 𝜌𝜌2(𝑟𝑟)𝜑𝜑2(𝑟𝑟)𝑑𝑑𝑉𝑉𝑉𝑉2

.       (3.40)  

Both 𝜑𝜑1(𝑟𝑟′)  and 𝜑𝜑2(𝑟𝑟)  are electrostatic potentials generated by V1 and V2, 
respectively.  

x

y

z

O
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Example 3.3 Find the self-energy of a uniformly charge distributed sphere with a charge density 
𝜌𝜌 and a radius R. 

 
Fig. 3.9 (a) A sphere of uniformly distributed charges. (b) Building the charged 

sphere layer-by-layer (each layer is a charged shell). 

Discussion: The uniformly charged sphere is shown in Figure 3.9a, with a total 
charge of 𝑞𝑞 = 4

3
𝜋𝜋𝑅𝑅3𝜌𝜌. There are three different ways to solve this problem.  

Mathod#1:  Based on Equation 3.36, we can first calculate the electric field 
generated by the charged sphere. Based on the Gauss’s law, the E-field 𝐸𝐸(𝑟𝑟) can 
be calculated as, 

𝐸𝐸(𝑟𝑟) = �

𝑞𝑞
4𝜋𝜋𝜀𝜀0

𝑟𝑟
𝑅𝑅3

  for 𝑟𝑟 ≤ 𝑅𝑅
𝑞𝑞

4𝜋𝜋𝜀𝜀0

1
𝑟𝑟2

  for 𝑟𝑟 > 𝑅𝑅
. 

Therefore, 

𝑈𝑈𝑆𝑆 = 𝜀𝜀0
2 ∫ 𝐸𝐸(𝑟𝑟)2∞

0 4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟  

   = 𝜀𝜀0
2 ∫ � 𝑞𝑞

4𝜋𝜋𝜀𝜀0

𝑟𝑟
𝑅𝑅3
�
2𝑅𝑅

0 4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟 + 𝜀𝜀0
2 ∫ � 𝑞𝑞

4𝜋𝜋𝜀𝜀0

1
𝑟𝑟2
�
2∞

𝑅𝑅 4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟 

= 𝜀𝜀0
2
� 𝑞𝑞
4𝜋𝜋𝜀𝜀0

�
2
�4𝜋𝜋
5𝑅𝑅

+ 4𝜋𝜋
𝑅𝑅
� = 3

5
1

4𝜋𝜋𝜀𝜀0

𝑞𝑞2

𝑅𝑅
 . 

Mathod#2:  Based on Equation 3.34, we can first calculate the electric potential 
generated by the charged sphere, 

x

y

z

R

O x

y

z

O

R
r

dr

(a)                                                                (b)
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  𝜑𝜑(𝑟𝑟) = �
𝑞𝑞

4𝜋𝜋𝜀𝜀0
( 3
2𝑅𝑅
− 𝑟𝑟2

2𝑅𝑅3
)  for 𝑟𝑟 ≤ 𝑅𝑅

𝑞𝑞
4𝜋𝜋𝜀𝜀0

1
𝑟𝑟

                  for 𝑟𝑟 > 𝑅𝑅
. 

Since 𝜌𝜌(𝑟𝑟) = 0 for 𝑟𝑟 > 𝑅𝑅, we only need to calculate the integration for 𝑟𝑟 ≤ 𝑅𝑅, 

      𝑈𝑈𝑆𝑆 = 1
2 ∫

𝑞𝑞
4𝜋𝜋𝜀𝜀0

𝜌𝜌( 3
2𝑅𝑅
− 𝑟𝑟2

2𝑅𝑅3
)𝑅𝑅

0 4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟 = 3𝑞𝑞2

16𝜋𝜋𝜀𝜀0𝑅𝑅3
�𝑅𝑅2 − 𝑅𝑅2

5
� = 3

5
1

4𝜋𝜋𝜀𝜀0

𝑞𝑞2

𝑅𝑅
.  

Mathod#3:  We can build the charged sphere layer by layer as shown in Figure 
3.9b. Assuming that a small charged sphere with radius 𝑟𝑟, the total charge of this 
sphere is 𝑞𝑞 = 4

3
𝜋𝜋𝑟𝑟3𝜌𝜌, and the field and potential outside the small charged sphere 

can be viewed as those generated by a point charge q in the center. In order to build 
a charged sphere with a radius R, a new layer of charged shell with radius r and 
thickness dr, with a total charge  of 𝑑𝑑𝑞𝑞 = 4𝜋𝜋𝑟𝑟2𝜌𝜌𝑑𝑑𝑟𝑟, needs to be brought from 
infinity to locate r, where an external force needs to do a positive work to overcome 
the repulsion force between the small sphere and the shell. We will keep on adding 
the shells till the radius r reaches R. Therefore, the total work done by the external 
force will be the self-energy of the uniformly charged sphere, i.e.,  

        𝑈𝑈𝑆𝑆 = ∫ 𝜑𝜑(𝑟𝑟)𝑑𝑑𝑞𝑞𝑅𝑅
0 = ∫ 𝑞𝑞

4𝜋𝜋𝜀𝜀0

1
𝑟𝑟

4𝜋𝜋𝑟𝑟2𝜌𝜌𝑑𝑑𝑟𝑟𝑅𝑅
0 = 4𝜋𝜋𝜌𝜌2

3𝜀𝜀0
∫ 𝑟𝑟4𝑑𝑑𝑟𝑟𝑅𝑅
0 = 3

5
1

4𝜋𝜋𝜀𝜀0

𝑞𝑞2

𝑅𝑅
. 

 
 

In-class Activity 
3-1. A conducting object has a hollow cavity in its interior. If a point charge q is 

introduced into the cavity, prove that the charge -q is introduced on the 
surface of the cavity. 

3-2. Please verify the E-filed boundary matching conditions for a charged 
conductor sphere. 

3-3. Given a spherical shell of charge, radius R, uniform surface charge density 
𝜎𝜎0. Determine the self-energy of the charge distribution.  

3-4. Given two charged spheres, one with charge q1 and radius R1, and the other 
with charge q2 and radius R2. The two spheres are placed at a center-to-center 
distance of l. Find the total electrostatic energy of the system. 
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