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Chapter 8 
Poisson’s Equation  
 
8.1 General solution 
When free charges exist in space, the electric potential 𝜑𝜑(𝑟𝑟) satisfies Poison’s 
equation, which is written as 

∇2𝜑𝜑(𝑟𝑟) = −
𝜌𝜌𝑓𝑓(𝑟𝑟)
𝜀𝜀𝜀𝜀0

. (3.15) 

Under Dirichlet boundary conditions, where the potential on a surface S is 
specified as 𝜑𝜑(𝑟𝑟𝑠𝑠) = 𝑓𝑓(𝑟𝑟𝑠𝑠) or Neumann boundary conditions, where 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑛𝑛� ∙ ∇𝜑𝜑, 

the solution to Poisson’s equation is unique. Specifically, we have a unique 
solution 𝜑𝜑1(𝑟𝑟), 

            ∇2𝜑𝜑1(𝑟𝑟) = −𝜌𝜌𝑓𝑓(𝑟𝑟)
𝜀𝜀𝜀𝜀0

.   (8.1) 
From this, the general solution to Poisson’s equation can be expressed as, 

       𝜑𝜑𝑃𝑃(𝑟𝑟) = 𝜑𝜑1(𝑟𝑟) + 𝜑𝜑𝐿𝐿(𝑟𝑟),    (8.2) 
where 𝜑𝜑𝐿𝐿(𝑟𝑟) satisfies the Laplace equation, ∇2𝜑𝜑𝐿𝐿(𝑟𝑟) = 0. Using the principle of 
superposition, the total potential satisfies  

     ∇2𝜑𝜑𝑃𝑃(𝑟𝑟) = ∇2𝜑𝜑1(𝑟𝑟) + ∇2𝜑𝜑𝐿𝐿(𝑟𝑟) = −𝜌𝜌𝑓𝑓(𝑟𝑟)
𝜀𝜀𝜀𝜀0

.   (8.3) 
Below, we illustrate the general solution with two examples: a point charge in a 
conducting cavity and a point charge near a grounded conducting plane.  

 
Fig. 8.1 A point charge inside a metal cavity. 
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For a point charge 𝑞𝑞, the Poisson’s equation can be written as, 
           ∇2𝜑𝜑(𝑟𝑟) = −𝑞𝑞𝑞𝑞(𝑟𝑟−𝑟𝑟0)

𝜀𝜀0
.   (8.4) 

A particular solution to this equation is the potential generated by the point charge, 
            𝜑𝜑1(𝑟𝑟) = 1

4𝜋𝜋𝜀𝜀0

𝑞𝑞
|𝑟𝑟−𝑟𝑟0|.    (8.5) 

If the point charge is placed within a cavity inside a conductor (see Figure 8.1), 
the boundary condition requires that the potential on the cavity surface remains 
constant ( 𝜑𝜑(𝑟𝑟𝑠𝑠) = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 ). To satisfy this, an induced surface charge 
distribution 𝜎𝜎(𝑟𝑟𝑠𝑠) arises on the cavity walls, contributing an additional potential. 
The total potential is then,  

𝜑𝜑(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞
|𝑟𝑟−𝑟𝑟0| + 1

4𝜋𝜋𝜀𝜀0
∯ 𝜎𝜎(𝑟𝑟𝑠𝑠)

|𝑟𝑟−𝑟𝑟𝑠𝑠|𝑑𝑑𝑑𝑑′𝑆𝑆 ,   (8.6) 
Here, the second term satisfies the Laplace equation and represents the potential 
due to the induced surface charge distribution. 

 
Fig. 8.2 The image charge of a point charge on top of an infinitely large grounded 

conducting plate.  
 

The Method of Images (MoI) offers a powerful way to solve Poisson’s equation in 
the presence of conducting boundaries. Consider a point charge 𝑞𝑞  located at 
(0, 0, 𝑧𝑧0) above a grounded, infinitely large conducting plane (Figure 8.2). To 
satisfy the boundary condition that the potential 𝜑𝜑(𝜌𝜌, 𝑧𝑧 = 0) = 0 on the plane 
(𝑧𝑧 = 0), we introduce an image charge  −𝑞𝑞 at (0, 0,−𝑧𝑧0). The potential in the 
upper half-space (𝑧𝑧 ≥ 0) at 𝑟𝑟 is then given by the superposition of the potentials 
from the real charge and the image charge, 

        𝜑𝜑(𝜌𝜌, 𝑧𝑧 ≥ 0) = 𝑞𝑞
4𝜋𝜋𝜀𝜀0

� 1
�𝜌𝜌2+(𝑧𝑧−𝑧𝑧0)2

− 1
�𝜌𝜌2+(𝑧𝑧+𝑧𝑧0)2

�.   (8.7) 

In this equation, the first term 𝑞𝑞
4𝜋𝜋𝜀𝜀0

1
�𝜌𝜌2+(𝑧𝑧−𝑧𝑧0)2

  corresponds to the potential of the 

real charge and satisfies Poisson’s equation, while the second term 
− 𝑞𝑞

4𝜋𝜋𝜀𝜀0

1
�𝜌𝜌2+(𝑧𝑧+𝑧𝑧0)2

 corresponds to the potential of the image charge and satisfies 

the Laplace equation, mimicking the potential due to the surface charge 
distribution on the conducting plane.    
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The force between the point charge and the conducting plane is attractive and 
can be calculated as, 

      �⃗�𝐹 = − 𝑞𝑞2

16𝜋𝜋𝜀𝜀0𝑧𝑧𝑜𝑜2
�̂�𝑧.     (8.8) 

The induced surface charge density on the plane is,  
𝜎𝜎 = −𝜀𝜀0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

.    (8.9) 
 
8.2 Method of Images 
The MoI is a powerful mathematical technique used to solve Poisson’s equation 
when a charge interacts with conducting boundaries. For a point charge, the 
general solution to Poisson’s equation is, 

𝜑𝜑(𝑟𝑟) =
1

4𝜋𝜋𝜀𝜀0
𝑞𝑞

|𝑟𝑟 − 𝑟𝑟0| + 𝜑𝜑𝐿𝐿(𝑟𝑟). (8.10) 

Here, 𝜑𝜑𝐿𝐿(𝑟𝑟) satisfies the Laplace equation and represents the potential due to the 
conducting boundary. Using the MoI, 𝜑𝜑𝐿𝐿(𝑟𝑟) can be expressed as the potential of 
an image charge, which simplifies the solution while maintaining the physical 
boundary conditions. Below, we examine several practical examples of the MoIs. 

 
Fig. 8.3 A point charge outside a grounded conductor sphere, with an image 

charge inside the sphere. 

8.2.1 Point charge near a grounded conducting sphere 

Consider a point charge 𝑞𝑞 located at 𝑟𝑟0 outside a grounded conductor sphere of 
radius 𝑅𝑅 as shown in Figure 8.3. To ensure that the sphere’s surface potential 
remains zero (𝜑𝜑(𝑟𝑟 = 𝑅𝑅) = 0), an image charge 𝑞𝑞′ is introduced at location 𝑟𝑟0′ 
inside the sphere. The total potential outside the sphere (𝑟𝑟 ≥ 𝑅𝑅) can be written as, 

     𝜑𝜑(𝑟𝑟 ≥ 𝑅𝑅) = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞
|𝑟𝑟−𝑟𝑟0| + 1

4𝜋𝜋𝜀𝜀0

𝑞𝑞′
�𝑟𝑟−𝑟𝑟0′�

.     (8.11) 
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Given the azimuthal symmetry of the system, both 𝑟𝑟0 and 𝑟𝑟0′ lie along the same 
radial direction 𝑛𝑛�. At the surface of the sphere, 𝑟𝑟 = 𝑅𝑅𝑛𝑛�, the boundary condition 
requires 

𝜑𝜑(𝑟𝑟 = 𝑅𝑅𝑛𝑛�) = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞
𝑟𝑟0−𝑅𝑅

+ 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞′
𝑅𝑅−𝑟𝑟0′

  

      = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞
𝑟𝑟0

1
1−𝑅𝑅/𝑟𝑟0

+ 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞′
𝑅𝑅

1
1−𝑟𝑟0′/𝑅𝑅

= 0.  (8.12) 

One way to make above equation 𝜑𝜑 = 0 is, 

�

𝑞𝑞
𝑟𝑟0

= −𝑞𝑞′
𝑅𝑅

1 − 𝑅𝑅
𝑟𝑟0

= 1 − 𝑟𝑟0′/𝑅𝑅
.    (8.13) 

Solving this condition gives the values for the image charge and its position,  

     �
𝑞𝑞′ = − 𝑅𝑅

𝑟𝑟0
𝑞𝑞

𝑟𝑟0′ = 𝑅𝑅2

𝑟𝑟0

,    (8.14) 

Thus, the total potential outside the sphere is 

   𝜑𝜑(𝑟𝑟 ≥ 𝑅𝑅) = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞
|𝑟𝑟−𝑟𝑟0| −

1
4𝜋𝜋𝜀𝜀0

𝑅𝑅𝑞𝑞/𝑟𝑟0
�𝑟𝑟−𝑟𝑟0𝑅𝑅2/𝑟𝑟02�

.    (8.15) 

The induced surface charge density on the conducting sphere can be calculated as 

𝜎𝜎 = −𝜀𝜀0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
�
𝑟𝑟=𝑅𝑅

= − 𝑞𝑞
4𝜋𝜋𝑅𝑅

𝑟𝑟02−𝑅𝑅2

�𝑟𝑟02+𝑅𝑅2−2𝑟𝑟0𝑅𝑅 cos𝜃𝜃�
3/2.    (8.16) 

Here 𝜃𝜃 is the angle between 𝑟𝑟 and 𝑟𝑟0. The attractive force between the point charge 
and the sphere is, 

𝐹𝐹 = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞2

𝑅𝑅2
�𝑅𝑅
𝑟𝑟0
�
3

(1 − 𝑅𝑅2

𝑟𝑟02
)−2.    (8.17) 

Alternative Scenarios for a Point Charge Outside a Conducting Sphere  

(1) Conducting sphere not grounded 

If the conducting sphere is not grounded, the image charge 𝑞𝑞′ and its position  𝑟𝑟0′ 
remain the same, as given by Equation 8.14. However, since the sphere must 
remain electrically neutral, a uniform charge distribution of  −𝑞𝑞′ is induced on the 
sphere’s surface to balance  𝑞𝑞′. This −𝑞𝑞′ charge should be uniformly distributed 
on the sphere surface, which induces another potential, − 1

4𝜋𝜋𝜀𝜀0

𝑞𝑞′
|𝑟𝑟| . The total 

potential at 𝑟𝑟 ≥ 𝑅𝑅 can be written as, 

     𝜑𝜑(𝑟𝑟 ≥ 𝑅𝑅) = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞
|𝑟𝑟−𝑟𝑟0| −

1
4𝜋𝜋𝜀𝜀0

𝑅𝑅𝑅𝑅
𝑟𝑟0

�𝑟𝑟−𝑟𝑟��⃗ 0𝑅𝑅
2

𝑟𝑟0
2 �

+ 1
4𝜋𝜋𝜀𝜀0

𝑅𝑅
𝑟𝑟0
𝑞𝑞

|𝑟𝑟| .    (8.18) 
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(2) Conducting sphere with a net charge 𝑄𝑄 

If the sphere initially carries a net charge 𝑄𝑄, the charge 𝑄𝑄 will distribute uniformly 
on the sphere’s surface. The total potential outside the sphere is then,    

       𝜑𝜑(𝑟𝑟 ≥ 𝑅𝑅) = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞
|𝑟𝑟−𝑟𝑟0| −

1
4𝜋𝜋𝜀𝜀0

𝑅𝑅𝑅𝑅
𝑟𝑟0

�𝑟𝑟−𝑟𝑟��⃗ 0𝑅𝑅
2

𝑟𝑟0
2 �

+ 1
4𝜋𝜋𝜀𝜀0

𝑄𝑄+𝑅𝑅
𝑟𝑟0
𝑞𝑞

|𝑟𝑟| .   (8.19) 

(3) Conducting sphere at a fixed potential 𝑉𝑉0 

If the conducting sphere is held at a fixed potential 𝑉𝑉0, the boundary condition 
becomes 𝜑𝜑(𝑟𝑟 = 𝑅𝑅) = 𝑉𝑉0. To satisfy this, an additional potential term is added 

𝜑𝜑(𝑟𝑟 ≥ 𝑅𝑅) = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞
|𝑟𝑟−𝑟𝑟0| −

1
4𝜋𝜋𝜀𝜀0

𝑅𝑅𝑅𝑅
𝑟𝑟0

�𝑟𝑟−𝑟𝑟��⃗ 0𝑅𝑅
2

𝑟𝑟0
2 �

+ 𝑉𝑉0𝑅𝑅
|𝑟𝑟| .    (8.20) 

In this expression, the first two terms ensure that the potential vanishes at  𝑟𝑟 = 𝑅𝑅, 
while the third term raises the potential to 𝑉𝑉0. 

 
Fig. 8.4 Two point charges outside a conductor sphere. 

8.2.2 Method of images for a conducting sphere in a uniform external field 

The MoI can be used to determine the potential generated by a uniform external 
electric field applied to a conducting sphere. As shown in Figure 8.4, the uniform 
external field is simulated by placing two point charges ±𝑄𝑄 symmetrically on 
opposite sides of the conducting sphere at a distance 𝑐𝑐 . The external field is 
recovered by taking the limit 𝑐𝑐 → ∞, ensuring that the field approaches uniformity 
over the sphere. Each point charge induces an image charge inside the conducting 
sphere. The magnitudes and positions of these image charges are given by  

�
𝑞𝑞±
′ = ∓𝑄𝑄𝑅𝑅/𝑐𝑐
𝑟𝑟±
′ = ∓𝑅𝑅2/𝑐𝑐

.    (8.21) 

The total potential 𝜑𝜑(𝑟𝑟) at a point 𝑟𝑟 outside the sphere is the superposition of the 
potentials due to the point charges ±𝑄𝑄 and their corresponding image charges 𝑞𝑞±

′ . 
The expression for 𝜑𝜑(𝑟𝑟) is 
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        𝜑𝜑(𝑟𝑟) = 𝑄𝑄/4𝜋𝜋𝜀𝜀0

(𝑟𝑟2+𝑎𝑎2+2𝑟𝑟𝑎𝑎 cos𝜃𝜃)
1
2
− 𝑄𝑄/4𝜋𝜋𝜀𝜀0

(𝑟𝑟2+𝑎𝑎2−2𝑟𝑟𝑎𝑎 cos𝜃𝜃)
1
2
− 𝑅𝑅𝑄𝑄/4𝜋𝜋𝜀𝜀0

𝑎𝑎�𝑟𝑟2+𝑅𝑅
4
𝑎𝑎

2
+2𝑅𝑅

2𝑟𝑟cos𝜃𝜃
𝑎𝑎 �

1
2
 

+ 𝑅𝑅𝑄𝑄/4𝜋𝜋𝜀𝜀0

𝑎𝑎(𝑟𝑟2+𝑅𝑅4/𝑎𝑎2−2𝑅𝑅2𝑟𝑟 cos𝜃𝜃/𝑎𝑎)
1
2
.      (8.22) 

For a uniform external field, we take the limit 𝑐𝑐 → ∞. Expanding Equation 8.22 
using a Taylor series for large 𝑐𝑐, the potential becomes 

𝜑𝜑(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

�− 2𝑄𝑄
𝑎𝑎2
𝑟𝑟 cos𝜃𝜃 + 2𝑄𝑄

𝑎𝑎2
𝑅𝑅3

𝑟𝑟2
cos𝜃𝜃� +⋯   (8.23) 

The first term in Equation 8.23 corresponds to the applied uniform field, while the 
second term accounts for the field distortion caused by the induced charges on the 
sphere. Comparing this with a uniformly applied external field 𝐸𝐸�⃗ 0 = −∇𝜑𝜑(𝑟𝑟), we 
identify the relationship between 𝑄𝑄 and the applied field 𝐸𝐸0 

𝐸𝐸0 = 1
2𝜋𝜋𝜀𝜀0

𝑄𝑄
𝑎𝑎2

.     (8.24) 

Substituting this into the expression for 𝜑𝜑(𝑟𝑟), the potential in the presence of the 
sphere is 

𝜑𝜑(𝑟𝑟) = −𝐸𝐸0 �𝑟𝑟 −
𝑅𝑅3

𝑟𝑟2
� cos𝜃𝜃 = −𝐸𝐸0𝑧𝑧 �1 −

𝑅𝑅3

𝑟𝑟3
�.   (8.25) 

This result shows the distortion of the potential due to the conducting sphere. It 
matches the solution obtained from solving Laplace’s equation directly, as 
described in Example 7.2. 

 
Fig. 8.5 A dipole above a grounded conductor plane. 

8.2.3 A dipole near a grounded conductor plane 
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The MoI can also be applied to solve for the potential generated by a dipole near a 
grounded conducting plane. In this case, the dipole consists of two charges, +𝑞𝑞 
and −𝑞𝑞, separated by a small distance 𝑑𝑑. The corresponding image charges are 
placed symmetrically below the conducting plane, such that the conducting surface 
at 𝑧𝑧 = 0 remains at zero potential. Figure 8.5 illustrates this setup, showing the 
real dipole and its image dipole. Assume the real dipole is in the x-z plane, with its 
dipole moment 𝑝𝑝 making an angle 𝛼𝛼 with the z-axis. The dipole moments of the 
real and image dipoles are 

�𝑝𝑝 = 𝑝𝑝 cos𝛼𝛼 𝑘𝑘� − 𝑝𝑝 sin𝛼𝛼 𝚤𝚤̂
𝑝𝑝′ = 𝑝𝑝 cos𝛼𝛼 𝑘𝑘� + 𝑝𝑝 sin𝛼𝛼 𝚤𝚤̂

.    (8.26) 

The real dipole is located at (0,0, 𝑧𝑧0) , while the image dipole is located at 
(0,0,−𝑧𝑧0) . The total potential 𝜑𝜑(𝑟𝑟)  at a point 𝑟𝑟 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) at 𝑧𝑧 ≥ 0  is the 
superposition of the potentials generated by the real dipole and its image dipole. 
This can be expressed as  

𝜑𝜑(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

�⃗�𝑝∙(𝑟𝑟−𝑟𝑟0)
|𝑟𝑟−𝑟𝑟0|3 + 1

4𝜋𝜋𝜀𝜀0

�⃗�𝑝′∙�𝑟𝑟−𝑟𝑟0′�

�𝑟𝑟−𝑟𝑟0′�
3   

         = 1
4𝜋𝜋𝜀𝜀0

−𝑝𝑝𝑝𝑝 sin𝛼𝛼+𝑝𝑝(𝑧𝑧−𝑧𝑧0) cos𝛼𝛼
[𝑝𝑝2+𝑦𝑦2+(𝑧𝑧−𝑧𝑧0)2]3/2 + 1

4𝜋𝜋𝜀𝜀0

𝑝𝑝𝑝𝑝 sin𝛼𝛼+𝑝𝑝(𝑧𝑧+𝑧𝑧0) cos𝛼𝛼
[𝑝𝑝2+𝑦𝑦2+(𝑧𝑧+𝑧𝑧0)2]3/2  .  (8.27) 

 
Fig. 8.6 A dipole near a grounded conductor sphere. 

 

8.2.4 A dipole near a conductor sphere 

The MoI can also be used to analyze the interaction between a dipole and a 
conducting sphere. In this scenario, as shown in Figure 8.6, the positive charge 
+𝑞𝑞 of the dipole is located at 𝑟𝑟+, and the negative charge −𝑞𝑞 is located at 𝑟𝑟−. The 
original dipole moment 𝑝𝑝 can be written as, 

                           𝑝𝑝 = 𝑞𝑞(𝑟𝑟+ − 𝑟𝑟−).     (8.28) 
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Each charge induces an image charge within the sphere to maintain the boundary 
conditions imposed by the conductor, which is given by 

     �
𝑞𝑞±
′ = ∓𝑞𝑞𝑅𝑅/𝑟𝑟±

𝑟𝑟±
′ = ∓𝑅𝑅2𝑟𝑟±/𝑟𝑟±

2.     (8.29) 

These image charges collectively produce an image dipole moment, which is 
calculated as, 

𝑝𝑝′ = 𝑞𝑞+′ 𝑟𝑟+′ + 𝑞𝑞−′ 𝑟𝑟−′ = 𝑞𝑞 𝑅𝑅3

𝑟𝑟−3
𝑟𝑟− − 𝑞𝑞 𝑅𝑅3

𝑟𝑟+
3 𝑟𝑟+.     (8.30) 

To simplify the expressions, we define 𝑟𝑟0 = 𝑟𝑟++𝑟𝑟−
2

, 𝑟𝑟± = 𝑟𝑟0 ± 𝑟𝑟+−𝑟𝑟−
2

, and thus 
1
𝑟𝑟±
3 = 1

�𝑟𝑟0±𝑟𝑟��⃗ +−𝑟𝑟��⃗ −
2 �

3 = 1

�𝑟𝑟02+
|𝑟𝑟��⃗ +−𝑟𝑟��⃗ −|2

4 ±𝑟𝑟0∙(𝑟𝑟+−𝑟𝑟−)�
3/2 ≈

1
𝑟𝑟0
3 �1 ∓

3
2
𝑟𝑟0∙(𝑟𝑟+−𝑟𝑟−)

𝑟𝑟02
�.  (8.31) 

Here we assume that |𝑟𝑟+ − 𝑟𝑟−| ≪ |𝑟𝑟0| for simplification. Substituting Equation 
8.31 into Equation 8.30, the image dipole moment becomes 

     𝑝𝑝′ = 𝑅𝑅3

𝑟𝑟02
�𝑞𝑞(𝑟𝑟− − 𝑟𝑟+) + 3

2
𝑟𝑟0∙𝑞𝑞(𝑟𝑟+−𝑟𝑟−)

𝑟𝑟02
(𝑟𝑟+ − 𝑟𝑟−)�  

         = 𝑅𝑅3

𝑟𝑟02
�−𝑝𝑝 + 3

2
𝑟𝑟0∙�⃗�𝑝
𝑟𝑟02

(𝑟𝑟+ − 𝑟𝑟−)�.      (8.33) 

Since the induced image charges are not symmetrically distributed, an excess 
charge can accumulate on the conducting sphere, which can be calculated as, 

                𝑞𝑞𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠 = 𝑅𝑅𝑞𝑞 � 1
𝑟𝑟−
− 1

𝑟𝑟+
� = 𝑅𝑅𝑞𝑞 𝑟𝑟+−𝑟𝑟−

𝑟𝑟02
.    (8.34) 

For small separations, 
𝑟𝑟+ − 𝑟𝑟− ≈ −𝑑𝑑 cos𝛼𝛼,     (8.35) 

with 𝑑𝑑 = |𝑟𝑟+ − 𝑟𝑟−|  is the dipole length and 𝛼𝛼  is the angle between 𝑟𝑟0 and 𝑝𝑝 . 
Substituting this approximation gives, 

𝑞𝑞𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠 ≈ 𝑅𝑅𝑞𝑞 𝑑𝑑 cos𝛼𝛼
𝑟𝑟02

= 𝑅𝑅 �⃗�𝑝∙𝑟𝑟0
𝑟𝑟0
3 .    (8.36) 

Therefore, the potential generated outside the sphere can be written as,  

   𝜑𝜑(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

��⃗�𝑝∙(𝑟𝑟−𝑟𝑟0)
|𝑟𝑟−𝑟𝑟0|3 + 1

4𝜋𝜋𝜀𝜀0

�⃗�𝑝′∙�𝑟𝑟−𝑟𝑟0′�

�𝑟𝑟−𝑟𝑟0′�
3 � −

1
4𝜋𝜋𝜀𝜀0

𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠
|𝑟𝑟| .   (8.37) 

Here 𝑟𝑟0′ = 𝑟𝑟+′+𝑟𝑟−′

2
  represents the center of the image dipole. 

 

8.2.5 A charged wire near a conductive cylinder 

Consider an infinitely long wire carrying a uniform linear charge density 𝜆𝜆 , 
positioned parallel to an infinitely long grounded conductive cylinder with radius 
𝑅𝑅. The goal is to find the electric potential  𝜑𝜑(𝑥𝑥,𝑦𝑦) at a point 𝑷𝑷(𝑥𝑥,𝑦𝑦) outside the 
cylinder. This problem is inherently two-dimensional because, due to the 
cylindrical symmetry, 𝜑𝜑(𝑟𝑟) depends only on the 𝑥𝑥- and 𝑦𝑦-coordinates. 
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Fig. 8.7 A charged wire near a grounded conducting cylinder. 

 
Let the charged wire be positioned at a distance 𝑟𝑟0 from the center of the cylinder, 
the potential due to the wire alone, without the presence of the cylinder, is given 
by, 

𝜑𝜑(𝑟𝑟) = − 𝜆𝜆
2𝜋𝜋𝜀𝜀0

ln|𝑟𝑟 − 𝑟𝑟0| = − 𝜆𝜆
2𝜋𝜋𝜀𝜀0

ln�𝑟𝑟2 + 𝑟𝑟02 − 2𝑟𝑟𝑟𝑟0 cos𝜃𝜃.  (8.38) 

To satisfy the boundary condition imposed by the grounded conducting cylinder 
(where the potential on its surface is zero), we introduce an an image charge.  This 
image charge is represented by a fictitious wire of linear charge density 𝜆𝜆′ located 
at a position 𝑟𝑟0′ inside the cylinder. The potential due to both the original charge 
and the image charge wire is, 

𝜑𝜑(𝑟𝑟) = − 𝜆𝜆
2𝜋𝜋𝜀𝜀0

ln�𝑟𝑟2 + 𝑟𝑟02 − 2𝑟𝑟𝑟𝑟0 cos𝜃𝜃 − 𝜆𝜆′

2𝜋𝜋𝜀𝜀0
ln�𝑟𝑟2 + 𝑟𝑟0′2 − 2𝑟𝑟𝑟𝑟0′ cos𝜃𝜃 =

− 1
2𝜋𝜋𝜀𝜀0

ln �𝑟𝑟2+𝑟𝑟02−2𝑟𝑟𝑟𝑟0 cos𝜃𝜃�
𝜆𝜆/2

�𝑟𝑟2+𝑟𝑟0′2−2𝑟𝑟𝑟𝑟0′ cos𝜃𝜃�
−𝜆𝜆′/2.       (8.39) 

The grounded cylinder imposes the condition that 𝜑𝜑(𝑟𝑟) →constant on its surface 
(𝑟𝑟 = 𝑅𝑅). This leads to the relationship  

𝜆𝜆 = −𝜆𝜆′.     (8.40) 
Also the tangential electric field 𝐸𝐸𝜃𝜃(𝑟𝑟,𝜃𝜃) can be written as, 

𝐸𝐸𝜃𝜃(𝑟𝑟,𝜃𝜃) = −1
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃

= 𝜆𝜆
4𝜋𝜋𝜀𝜀0

� 𝑟𝑟0 sin𝜃𝜃
𝑟𝑟2+𝑟𝑟02−2𝑟𝑟𝑟𝑟0 cos𝜃𝜃

− 𝑟𝑟0′ sin𝜃𝜃
𝑟𝑟2+𝑟𝑟0′2−2𝑟𝑟𝑟𝑟0′ cos𝜃𝜃

�.  (8.41) 

When  𝑟𝑟 → 𝑅𝑅, 𝐸𝐸𝜃𝜃(𝑟𝑟,𝜃𝜃) = 0. Therefore, 
𝑟𝑟0′[𝑅𝑅2 + 𝑟𝑟02] = 𝑟𝑟0[𝑅𝑅2 + 𝑟𝑟0′2].    (8.42) 

There are two solutions for 𝑟𝑟0′ : 𝑟𝑟0′ = 𝑟𝑟0  and  𝑟𝑟0′ = 𝑅𝑅2/𝑟𝑟0 . We take the second 
solution, because the image charge must lie inside the cylinder. Therefore, the 
potential becomes,  

x

y

R

O

(x, y)
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𝜑𝜑(𝑟𝑟) = − 𝜆𝜆
4𝜋𝜋𝜀𝜀0

ln 𝑟𝑟2+𝑟𝑟02−2𝑟𝑟𝑟𝑟0 cos𝜃𝜃
𝑟𝑟2+𝑅𝑅4/𝑟𝑟02−2𝑟𝑟𝑅𝑅2 cos𝜃𝜃/𝑟𝑟0

.    (8.43) 

On the cylinder surface (𝑟𝑟 = 𝑅𝑅), the potential simplifies to 

𝜑𝜑(𝑅𝑅) = − 𝜆𝜆
2𝜋𝜋𝜀𝜀0

ln 𝑟𝑟0
𝑅𝑅

.     (8.44) 

 
Fig. 8.8 The electric field lines of a point charge at the boundary between 

materials 𝜅𝜅1 and 𝜅𝜅2. 

8.2.6 Method of image at a dielectric boundary 

When a point charge is placed near an interface between two infinitely large 
dielectric materials with dielectric constants 𝜅𝜅1 and 𝜅𝜅2, the problem requires the 
use of the method of images to determine the electric potential and fields in the 
regions separated by the interface at 𝑧𝑧 = 0. The configuration is shown in Figure 
8.8. At the interface (𝑧𝑧 = 0 ), the boundary conditions are derived from the 
continuity of the potential and the displacement field 

 �
𝜑𝜑1|𝑧𝑧=0 = 𝜑𝜑2|𝑧𝑧=0

𝜅𝜅1
𝜕𝜕𝜕𝜕1
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

= 𝜅𝜅2
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

,    (8.45) 

Here 𝜑𝜑1  and 𝜑𝜑2 are the electric potentials in regions 𝑧𝑧 > 0  and 𝑧𝑧 < 0 , 
respectively. To solve for the electric potential 𝜑𝜑(𝑟𝑟), we divide the configuration 
into two regions: 𝑧𝑧 > 0 and 𝑧𝑧 < 0.  
1. Region 𝑧𝑧 > 0 
The electric field in this region results from the original point charge q and the 
field induced by the interface. The interface can be treated as if it contains a 
fictitious image charge 𝑞𝑞2 located at a distance 𝑧𝑧0 below the interface (in 𝑧𝑧 < 0). 
The potential in this region is given by 

𝜑𝜑1(𝑟𝑟) = 1
4𝜋𝜋𝜅𝜅1𝜀𝜀0

� 𝑞𝑞
�𝜌𝜌2+(𝑧𝑧−𝑧𝑧0)2

+ 𝑞𝑞2
�𝜌𝜌2+(𝑧𝑧+𝑧𝑧0)2

�,   (8.46) 
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Where 𝜌𝜌 = �𝑥𝑥2 + 𝑦𝑦2 is the radial distance in the x-y plane.  
2. Region 𝑧𝑧 < 0 
In this region, the electric field can be treated as originating from an image charge 
𝑞𝑞1 , located at distance 𝑧𝑧0  above the interface (in  𝑧𝑧 < 0). The potential in this 
region is, 

𝜑𝜑2(𝑟𝑟) = 1
4𝜋𝜋𝜅𝜅2𝜀𝜀0

𝑞𝑞1
�𝜌𝜌2+(𝑧𝑧−𝑧𝑧0)2

.    (8.47) 

Apply the boundary conditions, we have  

⎩
⎪
⎨

⎪
⎧ 1
4𝜋𝜋𝜅𝜅1𝜀𝜀0

� 𝑞𝑞

�𝜌𝜌2+𝑧𝑧02
+ 𝑞𝑞2

�𝜌𝜌2+𝑧𝑧02
� = 1

4𝜋𝜋𝜅𝜅2𝜀𝜀0

𝑞𝑞1

�𝜌𝜌2+𝑧𝑧02

1
4𝜋𝜋𝜀𝜀0

−𝑞𝑞𝑧𝑧0

�𝜌𝜌2+𝑧𝑧02
+ 1

4𝜋𝜋𝜀𝜀0

𝑞𝑞2𝑧𝑧0

�𝜌𝜌2+𝑧𝑧02
= 1

4𝜋𝜋𝜀𝜀0

−𝑞𝑞1𝑧𝑧0

�𝜌𝜌2+𝑧𝑧02

.  

Solving these equations gives, 

�
𝑞𝑞1 = 2𝜅𝜅2

𝜅𝜅1+𝜅𝜅2
𝑞𝑞

𝑞𝑞2 = 𝜅𝜅1−𝜅𝜅2
𝜅𝜅1+𝜅𝜅2

𝑞𝑞
.     (8.48) 

The interaction between the real point charge 𝑞𝑞 and its image charge 𝑞𝑞2 leads to a 
force. This force is directed perpendicular to the interface and has a magnitude, 

        �⃗�𝐹 = − 1
4𝜋𝜋𝜅𝜅1𝜀𝜀0

𝑞𝑞𝑞𝑞2
(2𝑧𝑧0)2

�̂�𝑧.    (8.49) 

The presence of the dielectric materials induces polarization surface charges at the 
interface. These surface charge densities are given by  

�
𝜎𝜎𝑃𝑃1 = −𝜀𝜀0(𝜅𝜅1 − 1) 𝜕𝜕𝜕𝜕1

𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

= 𝑞𝑞𝑧𝑧0
2𝜋𝜋(𝜌𝜌2+𝑧𝑧02)3/2

𝜅𝜅2
𝜅𝜅1

𝜅𝜅1−1
𝜅𝜅1+𝜅𝜅2

, 𝑧𝑧 ≥ 0

𝜎𝜎𝑃𝑃2 = −𝜀𝜀0(𝜅𝜅2 − 1) 𝜕𝜕𝜕𝜕2
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

= −𝑞𝑞𝑧𝑧0
2𝜋𝜋(𝜌𝜌2+𝑧𝑧02)3/2

𝜅𝜅2−1
𝜅𝜅1+𝜅𝜅2

, 𝑧𝑧 ≤ 0
.  (8.50) 

Cylindrical Dielectric Interface with a Uniformly Charged Line 
Consider a dielectric cylinder with dielectric constant 𝜅𝜅1  embedded in a 
surrounding medium with dielectric constant 𝜅𝜅2 . Inside the cylinder lies a 
uniformly charged line with a linear charge density 𝜆𝜆. The interface between the 
cylinder and the surrounding medium is at radius 𝑅𝑅. This setup divides the problem 
into two regions: inside the dielectric cylinder (𝑟𝑟 < 𝑅𝑅) and outside the cylinder in 
the surrounding medium (𝑟𝑟 ≥ 𝑅𝑅). 
The goal is to determine the electric potential in both regions using the method of 
images and by applying boundary conditions.  
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Fig. 8.9 The dielectric cylinder (with dielectric constant 𝜅𝜅1) embedded in a 

different dielectric medium with dielectric constant 𝜅𝜅2, with a uniformly charged 
line. 

 
Region 1: 𝑟𝑟 ≥ 𝑅𝑅 (outside the cylinder) 
In the region outside the cylinder (𝑟𝑟 ≥ 𝑅𝑅), the field is influenced by the original 
line charge 𝜆𝜆  and an image charge 𝜆𝜆2 located within the cylinder at a distance 
𝑅𝑅2/𝑟𝑟0 from the cylinder’s center. Here, 𝑟𝑟0 is the radial position of the original line 
charge. The potential in this region is 

  𝜑𝜑2(𝑟𝑟) = − 𝜆𝜆
2𝜋𝜋𝜅𝜅2𝜀𝜀0

ln�(𝑥𝑥 − 𝑟𝑟0)2 + 𝑦𝑦2 − 𝜆𝜆2
2𝜋𝜋𝜅𝜅2𝜀𝜀0

ln�(𝑥𝑥 − 𝑅𝑅2/𝑟𝑟0)2 + 𝑦𝑦2.  (8.51) 

Region 2: 𝑟𝑟 < 𝑅𝑅 (inside the cylinder) 
Inside the cylinder (𝑟𝑟 < 𝑅𝑅), the field is influenced by the original line charge 𝜆𝜆, 
and an image charge 𝜆𝜆1 located at the same position as 𝜆𝜆. However, there is an 
additional net charge density 𝜆𝜆 − 𝜆𝜆1, which contributes to the potential. The total 
potential in this region is 

𝜑𝜑1(𝑟𝑟) = − 𝜆𝜆1
2𝜋𝜋𝜅𝜅1𝜀𝜀0

ln�(𝑥𝑥 − 𝑟𝑟0)2 + 𝑦𝑦2 − 𝜆𝜆−𝜆𝜆1
2𝜋𝜋𝜅𝜅1𝜀𝜀0

ln�𝑥𝑥2 + 𝑦𝑦2.  (8.52) 

Using the boundary conditions, by matching Equations 8.51 and 8.52, we have, 

�
𝜆𝜆2 = 𝜅𝜅2−𝜅𝜅1

𝜅𝜅1+𝜅𝜅2
𝜆𝜆

𝜆𝜆1 = 2𝜅𝜅1
𝜅𝜅1+𝜅𝜅2

𝜆𝜆
 .     (8.53) 

 
8.3 Green’s Function Method 
8.3.1 General solution 

Green’s function provides a powerful framework to solve Poisson’s equation under 
specific boundary conditions. It connects the field generated by a point charge 
source to the solution of the Poisson equation and is sometimes referred to as a 

x

y
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source function or impact function. Green’s function represents the potential or 
field generated by a point charge. For Poisson’s equation  

∇2𝜑𝜑(𝑟𝑟) = −
𝜌𝜌𝑓𝑓(𝑟𝑟)
𝜀𝜀𝜀𝜀0

, (3.15) 

the corresponding Green’s function is defined by, 

∇2𝐺𝐺(𝑟𝑟, 𝑟𝑟′) = −
𝛿𝛿(𝑟𝑟 − 𝑟𝑟′)

𝜀𝜀0
, (8.54) 

where 𝛿𝛿(𝑟𝑟 − 𝑟𝑟′) represents a unit point charge located at 𝑟𝑟′, and 𝐺𝐺(𝑟𝑟, 𝑟𝑟′) is the 
potential generated by this point charge. In free space, the Green’s function is 
derived directly from Coulomb’s law,  

       𝐺𝐺(𝑟𝑟, 𝑟𝑟′) = 1
4𝜋𝜋𝜀𝜀0

1
|𝑟𝑟−𝑟𝑟′|

.    (8.55) 

For an arbitrary charge distribution 𝜌𝜌(𝑟𝑟′), the potential in free space can then be 
expressed as, 

𝜑𝜑(𝑟𝑟) = 1
4𝜋𝜋𝜀𝜀0

∭ 𝜌𝜌�𝑟𝑟′�
|𝑟𝑟−𝑟𝑟′|

𝑑𝑑𝑉𝑉′𝑉𝑉′ = ∭ 𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′)𝑑𝑑𝑉𝑉′𝑉𝑉′ .       (3.13)  

In general, 𝐺𝐺(𝑟𝑟, 𝑟𝑟′) represents the potential generated by a unit point charge under 
specific boundary conditions. For example, consider the potential of a charge 
distribution near an infinite conducting plane. Using the method of images, the 
Green’s function in this scenario is 

     𝐺𝐺(𝑟𝑟, 𝑟𝑟′) = 1
4𝜋𝜋𝜀𝜀0

� 1
[𝜌𝜌2+𝜌𝜌′2−2𝜌𝜌𝜌𝜌′ cos(𝜙𝜙−𝜙𝜙′)+(𝑧𝑧−𝑧𝑧′)2]1/2 −

                                        1
[𝜌𝜌2+𝜌𝜌′2−2𝜌𝜌𝜌𝜌′ cos(𝜙𝜙−𝜙𝜙′)+(𝑧𝑧+𝑧𝑧′)2]1/2�.     (8.55) 

If the Green’s function for a specific boundary condition is known, as shown in 
Figure 8.10A, Poisson’s equation (Equation 3.15) can be solved using Green’s 
second identity, 

∭𝑑𝑑𝑉𝑉′�𝑓𝑓∇′2𝑔𝑔 − 𝑔𝑔∇′2𝑓𝑓� = ∯ 𝑑𝑑𝑑𝑑′𝑛𝑛�′ ∙ (𝑓𝑓∇′𝑔𝑔 − 𝑔𝑔∇′𝑓𝑓)𝑆𝑆 .  (8.56) 
Let 𝑓𝑓(𝑟𝑟′) = 𝜑𝜑(𝑟𝑟′) and 𝑔𝑔(𝑟𝑟′) = 𝐺𝐺(𝑟𝑟, 𝑟𝑟′). Substituting these into the identity gives 

�𝑑𝑑𝑉𝑉′�𝜑𝜑(𝑟𝑟′)∇′2𝐺𝐺(𝑟𝑟, 𝑟𝑟′) − 𝐺𝐺(𝑟𝑟, 𝑟𝑟′)∇′2𝜑𝜑(𝑟𝑟′)�

= � 𝑑𝑑𝑑𝑑′𝑛𝑛�′ ∙ [𝜑𝜑(𝑟𝑟′)∇′𝐺𝐺(𝑟𝑟, 𝑟𝑟′) − 𝐺𝐺(𝑟𝑟, 𝑟𝑟′)∇′𝜑𝜑(𝑟𝑟′)]
𝑆𝑆

 

According to Equation 8.54, we have 

𝜑𝜑(𝑟𝑟) = ∭𝑑𝑑𝑉𝑉′𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′) − 𝜀𝜀0∯ 𝑑𝑑𝑑𝑑′𝜑𝜑(𝑟𝑟′) 𝜕𝜕𝜕𝜕(𝑟𝑟,𝑟𝑟′)
𝜕𝜕𝜕𝜕′𝑆𝑆 +

 𝜀𝜀0 ∯ 𝑑𝑑𝑑𝑑′𝐺𝐺(𝑟𝑟, 𝑟𝑟′) 𝜕𝜕𝜕𝜕(𝑟𝑟′)
𝜕𝜕𝜕𝜕′

.𝑆𝑆        (8.56) 

This expression contains: 1. A bulk integral, ∭𝑑𝑑𝑉𝑉′𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′), representing 
the potential generated by the source charges; 2. Two surface integrations, one 
ensures that the solution satisfies the boundary conditions, and the other accounts 
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for the potential generated by induced charge distributions at the boundaries, i.e., 
satisfy the Laplace equation. 

For Dirichlet boundary condition, 𝜑𝜑(𝑟𝑟)|𝑟𝑟𝑠𝑠 = 𝑓𝑓, the Green’s function satisfies 
𝐺𝐺(𝑟𝑟, 𝑟𝑟′)|𝑟𝑟𝑠𝑠 = 0 . Substituting this condition into Equation 8.56 simplifies the 
potential, 

𝜑𝜑(𝑟𝑟) = ∭𝑑𝑑𝑉𝑉′𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′) − 𝜀𝜀0∯ 𝑑𝑑𝑑𝑑′𝜑𝜑(𝑟𝑟′) 𝜕𝜕𝜕𝜕(𝑟𝑟,𝑟𝑟′)
𝜕𝜕𝜕𝜕′𝑆𝑆 .  (8.57) 

For Neumann boundary condition, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑟𝑟𝑠𝑠

= 𝑓𝑓(𝑟𝑟), the Green’s function must 

satisfy a specific normalization. A typical choice is 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑟𝑟𝑠𝑠

= − 1
𝜀𝜀0𝐴𝐴

, where 𝐴𝐴 is the 

total surface area. This gives the potential,  

𝜑𝜑(𝑟𝑟) = 〈𝜑𝜑〉𝑠𝑠 + ∭𝑑𝑑𝑉𝑉′𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′) + 𝜀𝜀0 ∯ 𝑑𝑑𝑑𝑑′𝐺𝐺(𝑟𝑟, 𝑟𝑟′) 𝜕𝜕𝜕𝜕(𝑟𝑟′)
𝜕𝜕𝜕𝜕′

,𝑆𝑆   (8.58) 

where 〈𝜑𝜑〉𝑠𝑠 = 1
𝐴𝐴∯ 𝑑𝑑𝑑𝑑′𝜑𝜑(𝑟𝑟′)𝑆𝑆 , which is the average potential at the boundary. The 

Neumann boundary problem usually does not occur in electrostatics. 
 

 
Fig. 8.10 (A) Inside and outside a finite volume for Green’s functions. (B) A 

distributed charge and volume system. 
 

8.3.2 Dirichlet Green’s Function 

The reciprocal property of Green’s functions is given by, 
𝐺𝐺(𝑟𝑟, 𝑟𝑟′) = 𝐺𝐺(𝑟𝑟′, 𝑟𝑟).      (8.59) 

For a finite volume, two Green’s functions are typically required, 𝐺𝐺𝑖𝑖𝜕𝜕(𝑟𝑟, 𝑟𝑟′) for the 
inside of the volume and 𝐺𝐺𝑒𝑒𝑝𝑝(𝑟𝑟, 𝑟𝑟′) for the outside. 
For a charge distribution with boundaries (Figure 8.10B), the potential is, 

𝜑𝜑(𝑟𝑟) = ∭𝑑𝑑𝑉𝑉′𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′) + 𝜀𝜀0 ∑𝑘𝑘 ∯ 𝑑𝑑𝑑𝑑𝑘𝑘′ 𝑉𝑉𝑘𝑘
𝜕𝜕𝜕𝜕(𝑟𝑟,𝑟𝑟′)
𝜕𝜕𝜕𝜕𝑘𝑘

′ .𝑆𝑆𝑘𝑘
  (8.60) 

8.3.3 Method of Finding the Green’s Function 

x

y

z

O

’

’
(A)                                                                                  (B)
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There are two methods to find Green’s function, one is the Method of image. This 
is applicable when symmetry simplifies the placement of image charges to satisfy 
boundary conditions. The second method is the eigenfunction expansion. The 
eigenfunctions of the Laplace operator satisfy, 

    ∇2𝜓𝜓𝜕𝜕(𝑟𝑟) = −𝜆𝜆𝜕𝜕𝜓𝜓𝜕𝜕(𝑟𝑟),    (8.61) 
with the boundary conditions 𝜓𝜓𝜕𝜕(𝑟𝑟𝑠𝑠) = 0 . The eigen value 𝜆𝜆𝜕𝜕  are real and 
positive, and the normalized eigenfunctions should be complete, i.e., 

∑ 𝜓𝜓𝜕𝜕(𝑟𝑟)𝜓𝜓𝜕𝜕∗(𝑟𝑟′) =𝜕𝜕 𝛿𝛿(𝑟𝑟 − 𝑟𝑟′).    (8.62) 
Thus the Green’s function can be written as, 

𝐺𝐺𝐷𝐷(𝑟𝑟, 𝑟𝑟′) = 1
𝜀𝜀0
∑ 𝜓𝜓𝑛𝑛(𝑟𝑟)𝜓𝜓𝑛𝑛∗ (𝑟𝑟′)

𝜆𝜆𝑛𝑛𝜕𝜕 .    (8.63) 

The 𝐺𝐺𝐷𝐷(𝑟𝑟, 𝑟𝑟′) also satisfies the boundary condition, 𝐺𝐺𝐷𝐷(𝑟𝑟, 𝑟𝑟′)|𝑟𝑟𝑠𝑠 = 0. 

 

 
Example 8.1 Find the Green’s function in a cubic box. A spherical cavity was cut in the sphere 

with a radius a (a < R) as shown in Figure 8.11.  

 
Fig. 8.11 A cube with length of 𝑐𝑐. 

Discussion: We can use the eigenfunction method to determine the Green’s 
function. At the boundary, the potential is set to be zero. According to our 
boundary value problem knowledge, the eigenfunctions are sine function. 

Solution: The eigenfunction for this boundary can be written as, 

 𝜓𝜓𝑙𝑙𝑙𝑙𝜕𝜕(𝑟𝑟) = sin 𝑙𝑙𝜋𝜋𝑝𝑝
𝑎𝑎

sin𝑙𝑙𝜋𝜋𝑦𝑦
𝑎𝑎

sin 𝜕𝜕𝜋𝜋𝑧𝑧
𝑎𝑎

 

The eigen values are, 

x

z
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𝜆𝜆𝑙𝑙𝑙𝑙𝜕𝜕 =
𝜋𝜋2

𝑐𝑐2
(𝑙𝑙2 +𝑚𝑚2 + 𝑛𝑛2) 

Thus, the Green’s function can be written as 

𝐺𝐺𝐷𝐷(𝑟𝑟, 𝑟𝑟′) =
8

𝜋𝜋𝑐𝑐2𝜀𝜀0
�

sin 𝑙𝑙𝜋𝜋𝑥𝑥𝑐𝑐 sin𝑚𝑚𝜋𝜋𝑦𝑦𝑐𝑐 sin𝑛𝑛𝜋𝜋𝑧𝑧𝑐𝑐 sin 𝑙𝑙𝜋𝜋𝑥𝑥′𝑐𝑐 sin𝑚𝑚𝜋𝜋𝑦𝑦′𝑐𝑐 sin𝑛𝑛𝜋𝜋𝑧𝑧′𝑐𝑐
𝑙𝑙2 +𝑚𝑚2 + 𝑛𝑛2

𝑙𝑙,𝑙𝑙,𝜕𝜕=1

 

 

 
Example 8.2 A plane, circular, conducting disk separated with a very thin cut from the remining 

infinite conductive plane is biased with a potential 𝑉𝑉0, while the rest of the plane 
is grounded. Find the potential in 𝑧𝑧 ≥ 0 space.  

 

 
Fig. 8.12 A conductive plate with a circular thin cut. 

Discussion: The Green’s function can be determined by the method of image. If 
the gap can be neglected, the problem is an infinitely large conductive plane, so 
the Green’s function can be determined by Equation 8.7. 

Discussion: Based on Equation 8.7, the Green’s function can be written as, 

𝐺𝐺(𝑟𝑟, 𝑟𝑟′) = 1
4𝜋𝜋𝜀𝜀0

� 1
[𝜌𝜌2+𝜌𝜌′2−2𝜌𝜌𝜌𝜌′ cos(𝜙𝜙−𝜙𝜙′)+(𝑧𝑧−𝑧𝑧′)2]1/2 −

                                        1
[𝜌𝜌2+𝜌𝜌′2−2𝜌𝜌𝜌𝜌′ cos(𝜙𝜙−𝜙𝜙′)+(𝑧𝑧+𝑧𝑧′)2]1/2�.   

For 𝑧𝑧 ≥ 0,  

    𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′
�
𝑆𝑆′

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧′
�
𝑧𝑧′=0

= 1
4𝜋𝜋𝜀𝜀0

2𝑧𝑧
[𝜌𝜌2+𝜌𝜌′2−2𝜌𝜌𝜌𝜌′ cos(𝜙𝜙−𝜙𝜙′)+𝑧𝑧2]3/2. 
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Due to axial symmetry, we can choose 𝜙𝜙 = 0. Since there is no charge distribution, 
we have 

𝜑𝜑(𝑟𝑟) =
𝑉𝑉0
4𝜋𝜋

� 𝑑𝑑𝑑𝑑′
𝜕𝜕𝐺𝐺(𝑟𝑟, 𝑟𝑟′)
𝜕𝜕𝑛𝑛′𝑆𝑆

=
𝑉𝑉0𝑧𝑧
2𝜋𝜋

� 𝑑𝑑𝜙𝜙′
2𝜋𝜋

0
�

𝜌𝜌′𝑑𝑑𝜌𝜌′
[𝜌𝜌2 + 𝜌𝜌′2 − 2𝜌𝜌𝜌𝜌′ cos𝜙𝜙′+ 𝑧𝑧2]3/2

𝑅𝑅

0
. 

This integration is not solvable. But for 𝜌𝜌 = 0, one has 

𝜑𝜑(𝜌𝜌 = 0, 𝑧𝑧) = 𝑉𝑉0𝑧𝑧 ∫
𝜌𝜌′𝑑𝑑𝜌𝜌′

[𝜌𝜌′2+𝑧𝑧2]3/2
𝑅𝑅
0 = 𝑉𝑉0[1 − 𝑧𝑧

√𝑅𝑅2+𝑧𝑧2
]. 

When 𝑧𝑧 → 0, 𝜑𝜑 → 𝑉𝑉0; when 𝑧𝑧 → ∞, 𝜑𝜑 ≈ 𝑉𝑉0
𝑅𝑅2

2𝑧𝑧2
. 

 

 

 
Example 8.3 A conductive sphere is cut into two halves with an infinitely small gap. The top 

half has a potential 𝑉𝑉0/2 and the bottom half has  −𝑉𝑉0/2. Find the potential 
outside the sphere. 

 
Fig. 8.13 Cut conductive sphere. 

Discussion: The Green’s function can be determined by the method of image, i.e., 
via a point charge outside a conductive sphere, which can be determined by 
Equation 8.15. 

Discussion: Based on Equation 8.15, the Green’s function can be written as, 

x

y

z

R
O
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𝐺𝐺(𝑟𝑟, 𝑟𝑟′) = 1
[𝑟𝑟2+𝑟𝑟′2−2𝑟𝑟𝑟𝑟′ cos𝛾𝛾]1/2 −

𝑅𝑅/𝑟𝑟′
[𝑟𝑟2+(𝑅𝑅2/𝑟𝑟′)2−2𝑟𝑟𝑅𝑅2cos𝛾𝛾/𝑟𝑟′]1/2,   

with cos𝛾𝛾 = cos𝜃𝜃 cos𝜃𝜃′+ sin𝜃𝜃 sin𝜃𝜃′ cos(𝜙𝜙 − 𝜙𝜙′) . At the boundary (𝑟𝑟 = 𝑅𝑅), 
we have 

    𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟′
�
𝑟𝑟′=𝑅𝑅

= 𝑟𝑟2−𝑅𝑅2

𝑅𝑅[𝑟𝑟2+𝑅𝑅2−2𝑟𝑟𝑅𝑅 cos𝛾𝛾]3/2. 

Due to axial symmetry, we can choose 𝜙𝜙 = 0. Since there is no charge distribution, 
based on Equation 8.60, we have 

𝜑𝜑(𝑟𝑟) =
1

4𝜋𝜋
� 𝑑𝑑𝑑𝑑′

𝜕𝜕𝐺𝐺(𝑟𝑟, 𝑟𝑟′)
𝜕𝜕𝑛𝑛′

=
𝑉𝑉0
2
�1 −

𝑧𝑧2 − 𝑅𝑅2

𝑧𝑧√𝑅𝑅2 + 𝑧𝑧2
� .

𝑆𝑆
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